
Filomat 33:4 (2019), 1259–1266
https://doi.org/10.2298/FIL1904259R

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Abstract. In this paper we consider first order infinitesimal bending of curves and knots. The total
normalcy of the knot during the first order infinitesimal bending is discussed and expressions for the first
variation of the total normalcy are given. Some examples aimed to illustrate infinitesimal bending of knots
are shown using figures. Colors are used to illustrate normalcy values at different points of bent knots and
the total normalcy is numerically calculated.

1. Introduction and preliminaries

The study of knots and their properties is known as knot theory. There are different aspects of the
studying of knots. Apart from the mathematical point of view, this topic is of interest in the context of
different areas in sciences like biology, chemistry, physics, computer graphics (see [1–3, 5–10, 15, 17]). Under
the term knot we mean a closed, self-avoiding curve in a 3-dimensional space.

Since in this paper we are interested in a study of infinitesimal bending of knots, we will give a brief
overview of the results on the infinitesimal bending of curves. More information about infinitesimal
bending of curves and surfaces one can get from [4, 11–14, 16, 18–21].

Definition 1.1. Let us consider continuous regular curve

C : r = r(u), u ∈ J ⊆ R (1)

included in a family of the curves

Cε : r̃(u, ε) = rε(u) = r(u) + εz(u), u ∈ J, (ε ≥ 0, ε→ 0), (2)

where u is a real parameter and we get C for ε = 0 (C = C0). A family of curves Cε is an infinitesimal bending of
a curve C if

ds2
ε − ds2 = o(ε), (3)

where z = z(u) , z ∈ C1, is the infinitesimal bending field of the curve C.
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vljubica@pmf.ni.ac.rs (Ljubica S. Velimirović)
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Theorem 1.2. [4] A necessary and sufficient condition for z(u) to be an infinitesimal bending field of a curve C is to
be

dr · dz = 0, (4)

where · stands for the scalar product in R3. �

Theorem 1.3. [19] The infinitesimal bending field for the curve C is

z(u) =

∫
[p(u)n1(u) + q(u)n2(u)] du, (5)

where p(u) and q(u) are arbitrary integrable functions and vectors n1(u) and n2(u) are respectively unit principal
normal and binormal vector fields of the curve C. �

Geometric magnitudes are changing under infinitesimal bending and that changing is described by the
variation. We define the variation of geometric magnitudes according to [18].

Definition 1.4. LetA = A(u) be a magnitude that characterizes a geometric property on the curve C andAε = Aε(u)
the corresponding magnitude on the curve Cε being an infinitesimal bending of the curve C, and set

∆A=Aε −A=ε δA + ε2 δ2
A + . . . εn δn

A + . . . (6)

The coefficients δA, δ2
A, . . . , δn

A, . . . are the first, the second, ..., the nth variation of the geometric magnitude
A, respectively under the infinitesimal bending Cε of the curve C.

In this paper we will only consider the first variation. The first variation obviously satisfies

δA=
d
dε
Aε(u)

∣∣∣
ε=0
. (7)

In addition

a) δ(AB) = AδB +BδA, b) δ
(∂A
∂u

)
=
∂(δA)
∂u

, c) δ(dA) = d(δA). (8)

Below we will consider a regular curve

C : r = r(s) = r[u(s)], r : [0,L]→ R3, (9)

of the class Cα, α ≥ 3, parameterized by the arc length s. The unit tangent to the curve is given by t = r′,
where prime denotes a derivative with respect to arc length s. Clearly, t′ is orthogonal to t, but t′′ is not.
The classical Frenet equations

t′ = kn1, n′1 = −kt + τn2, n′2 = −τn1, (10)

describe the construction of an orthonormal basis {t,n1,n2} along a curve, where n1 and n2 are respectively
unit principal normal and binormal vector fields of the curve. We choose an orientation with n2 = t × n1. k
and τ are respectively the curvature and the torsion.

Consider an infinitesimal bending of the curve (9),

Cε : r̃(s, ε) = rε(s) = r(s) + εz(s). (11)

As the vector field z is defined in the points of the curve (9), it can be presented in the form

z = zt + z1n1 + z2n2, (12)

where zt is a tangential and z1n1 + z2n2 is a normal component, z, z1, z2 are the functions of s.

Theorem 1.5. [11] A necessary and sufficient condition for the field z, (12), to be an infinitesimal bending field of
the curve C, (9), is

z′ − kz1 = 0, (13)

where k is the curvature of C.

It is easy to see that under infinitesimal bending of the curve C, a unit vector of the orthonormal basis
and its variation are orthogonal. Also, the variation of the line element ds is equal to zero, i. e. δ(ds) = 0.
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2. Total normalcy of knots under infinitesimal bending

The total normalcy is a geometric quantity which measures the binormal indicatrix of a knot. It is
defined by the equation

ω =

∫
C

√
k2(s) + τ2(s) ds, (14)

where k and τ are the curvature and the torsion of the knot C, respectively.
Let us describe the behavior of the total normalcy under infinitesimal bending, i. e. let us find its

variation.
According to (7), the variation of the total normalcy satisfies the following equation

δω =
d
dε

wε

∣∣∣∣
ε=0

=
d
dε

∫ L

0

√
(k + εδk)2 + (τ + εδτ)2 (ds + εδ(ds))

∣∣∣∣
ε=0
,

i. e.

δω =

∫ L

0

kδk + τδτ
√

k2 + τ2
ds. (15)

It is necessary to find the variations of the curvature and the torsion under infinitesimal bending. Below
we will do that according to [11].

Since δt = δr′ = (δr)′ = z′ and δt′ = (δt)′, using (12), (13) and Frenet equations we obtain

δt = (z′1 − τz2 + kz) n1 + (z′2 + τz1) n2 (16)

and

δt′ = − k(kz + z′1 − τz2) t + (k′z + z′′1 + (k2
− τ2)z1 − 2τz′2 − τ

′z2) n1

+ (kτz + 2τz′1 + τ′z1 + z′′2 − τ
2z2) n2.

(17)

Taking a variation of the first equation in (10) we obtain δt′ = δk n1 + k δn1 wherefrom we have δk = n1 · δt′.
This leads to

δk = k′z + z′′1 + (k2
− τ2)z1 − 2τz′2 − τ

′z2. (18)

after using (17).
In order to determine the variation of the torsion, let us take a variation of the Frenet equation for n′1

and dot with n2. We have

δτ = kn2 · δt + n2 · δn′1. (19)

Further, after a little transformation of the previous equation using the Frenet equations we obtain

δτ = kn2 · δt +
(1

k
n2 · δt′

)′
(20)

Substituting (16) and (17) into (20) and using (13) we obtain

δτ = zτ′ + k(z′2 + 2τz1) +
{1

k

[
2τz′1 + τ′z1 + z′′2 − τ

2z2

]}′
. (21)

Let’s go back to the variation of the total normalcy (15). We will consider separately the following
integrals:

I1 =

∫ L

0

kδk
√

k2 + τ2
ds, I2

∫ L

0

τδτ
√

k2 + τ2
ds.
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Using (18) one obtains

I1 =

∫ L

0

k
√

k2 + τ2
(k′z + z′′1 + (k2

− τ2)z1 − 2τz′2 − τ
′z2)ds

=

∫ L

0

( kk′
√

k2 + τ2
z +

k
√

k2 + τ2
z′′1 +

k(k2
− τ2)

√

k2 + τ2
z1 −

2kτ
√

k2 + τ2
z′2 −

kτ′
√

k2 + τ2
z2

)
ds.

After a few transformations of the second and the fourth term in the previous integral we obtain

I1 =

∫ L

0

{ kk′
√

k2 + τ2
z +

[( k
√

k2 + τ2

)′′
+

k(k2
− τ2)

√

k2 + τ2

]
z1 +

[( 2kτ
√

k2 + τ2

)′
−

kτ′
√

k2 + τ2

]
z2

}
ds +

∫ L

0

[ k
√

k2 + τ2
z′1 −

( k
√

k2 + τ2

)′
z1 −

2kτ
√

k2 + τ2
z2

]′
ds.

(22)

The second integral is according to (21)

I2 =

∫ L

0

τ

k2 + τ2

{
zτ′ + k(z′2 + 2τz1) +

[1
k

(
2τz′1 + τ′z1 + z′′2 − τ

2z2

)]′}
, ds

wherefrom, after a few transformations, we obtain

I2 =

∫ L

0

{ ττ′
√

k2 + τ2
z +

[ 2kτ2

√

k2 + τ2
+

(( τ
√

k2 + τ2

)′ 2τ
k

)′
−

( τ
√

k2 + τ2

)′ τ′
k

]
z1

+
[
−

( kτ
√

k2 + τ2

)′
−

(( τ
√

k2 + τ2

)′ 1
k

)′′
+

( τ
√

k2 + τ2

)′ τ2

k

]
z2

}
ds

+

∫ L

0

{ τ

k
√

k2 + τ2
(2τz′1 + τ′z1 + z′′2 − τ

2z2) −
( τ
√

k2 + τ2

)′ 2τ
k

z1

−

( τ
√

k2 + τ2

)′ 1
k

z′2 +
kτ

√

k2 + τ2
z2 +

(( τ
√

k2 + τ2

)′ 1
k

)′
z2

}′
ds

(23)

Since

kk′ + ττ′
√

k2 + τ2
z = (

√

k2 + τ2)′z = (
√

k2 + τ2z)′ −
k(k2 + τ2)
√

k2 + τ2
z1

after using the necessary and sufficient condition for the infinitesimal bending, z′ = kz1, we obtain

δω =

∫ L

0

{[( k
√

k2 + τ2

)′′
+

(( τ
√

k2 + τ2

)′ 2τ
k

)′
−

( τ
√

k2 + τ2

)′ τ′
k

]
z1

+
[( k
√

k2 + τ2

)′
τ −

(( τ
√

k2 + τ2

)′ 1
k

)′′
+

( τ
√

k2 + τ2

)′ τ2

k

]
z2

}
ds

+

∫ L

0

{√
k2 + τ2z +

k
√

k2 + τ2
z′1 −

( k
√

k2 + τ2

)′
z1 −

kτ
√

k2 + τ2
z2

+
τ

k
√

k2 + τ2
(2τz′1 + τ′z1 + z′′2 − τ

2z2) −
( τ
√

k2 + τ2

)′ 2τ
k

z1

−

( τ
√

k2 + τ2

)′ 1
k

z′2 +
(( τ
√

k2 + τ2

)′ 1
k

)′
z2

}′
ds.

(24)

In the case of the infinitesimal bending of knots we specify the condition z(0) = z(L) for the infinitesimal
bending field in order to get a family of closed curves. Also, we suppose that the knot, as well as the
infinitesimal bending field are sufficiently smooth. Keeping this in mind we have the following theorem.
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Theorem 2.1. Under infinitesimal bending of a knot C, the variation of its total normalcy is

δω =

∫ L

0

{[( k
√

k2 + τ2

)′′
+

(( τ
√

k2 + τ2

)′ 2τ
k

)′
−

( τ
√

k2 + τ2

)′ τ′
k

]
z1

+
[( k
√

k2 + τ2

)′
τ −

(( τ
√

k2 + τ2

)′ 1
k

)′′
+

( τ
√

k2 + τ2

)′ τ2

k

]
z2

}
ds

(25)

where k and τ are the curvature and the torsion of C, respectively.

3. Normalcy of infinitesimally bent knots

Here we will give some examples aimed to illustrate infinitesimal bending on knots defined by a simple
parametric representation. Infinitesimal bending has an influence on the knotted curve, on its shape and
geometrical magnitudes. Our aim is to visualise changes in shape and normalcy. In following figures colors
are used to indicate the values of normalcy at different points of the knots, together with color-values scale.
In addition the total normalcy is also calculated.

We start from knot representations as a curve in R3. Then, according to (2) we apply the bending
of the first order given by (5). Bending field is defined by integral whose sub integral function includes
arbitrary functions: p and q. The curve is visualized as polygonal line which connect points on curve. At
every such point, as well as, every subdivision point for the purpose of numerically integral calculation
we should calculate functions: the curve, first, second and third derivative, both normals of the curve,
curvature and torsion. p and q, also local values of normalcy. This is necessary to obtain transformed shape
of curve and for aimed curve coloring. Instead of using existing software packages capable of symbolic and
numeric calculations also with some visualization features, we decided to develop our own software tool
usingMicrosoft Visual C++. We are dealing, according to (2) and (5), with arbitrary mathematical functions,
so tool is developed for manipulating explicitly defined functions. It starts from usual symbolic definitions
as a string, then parsing it to obtain an internal, tree like, form. For the purpose of efficiency the function is
parsed once, then calculated many times. We also have some additional important benefits of the tree like
form: make derivatives, combine more function to obtain a compound function like sub integral function
for infinitesimal bending field. Our tool has not possibility to calculate integral symbolically, instead we are
using ability for fast calculation of sub integral function. Those values are used to calculate needed integral
numerically, according to F(x) =

∫ x

0 f (x)dx.
Knot visualization and obtaining 3D model is done by using OpenGL. In the following examples the

knot is represented as a tube around a curve. It looks like a rope, but without examination any physical
characteristics of the rope.

3.1. Trefoil knot
A trefoil knot is given by the parametric equations: x = sin(u)+2sin(2u), y = cos(u)−2cos(2u), z = −sin(3u).

The basic and infinitesimally bent trefoil knots are given in Figs. 1 and 2.
The bending fields are defined by: p(u) = cos(3u) and q(u) = sin(3u).

The numerically calculated total normalcy of the trefoil knot curve is 15.626719, 15.875856 and 16.6498
for ε = 0, ε = 0.5 and ε = 1 respectively.
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Figure 1: Trefoil knot: basic and infinitesimally bent with ε = 0.5.

Figure 2: Trefoil knot: infinitesimally bent with ε = 1 and all knots together.

A second example of the trefoil knot is knot given by the parametric equations: x = (cos(2u)+2) ∗ cos(3u),
y = (cos(2u) + 2) ∗ sin(3u), z = −sin(2u), which is a kind of torus knot, obtained for p = 3, q = 2, topologically
equivalent to the trefoil knot. The basic and infinitesimally bent knots are given in Fig. 3.

The bending fields are defined by: p(u) = cos(6u) and q(u) = sin(6u).
The numerically calculated total normalcy of the p = 3, q = 2 torus knot is 19.558 and 32.0013 for ε = 0

and ε = 1.8 respectively.
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Figure 3: p = 3, q = 2 torus knot: basic and infinitesimally bent with ε = 1.8.

3.2. Figure eight knot
A figure eight knot is given by the parametric equations: x = (2+cos(2u))∗cos(3u), y = (2+cos(2u))∗sin(3u),

z = sin(4u). The basic and infinitesimally bent figure eight knot are given in Figs. 4 and 5.
The bending fields are defined by: p(u) = cos(6u) and q(u) = sin(6u).

Figure 4: Figure eight knot: basic and infinitesimally bent with ε = 1.3.
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Figure 5: Figure eight knot: basic and infinitesimally bent with ε = 1.3 together.

The numerically calculated total normalcy of the figure eight knot curve is 23.724 and 28.583 for ε = 0
and ε = 1.3 respectively.
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[5] M. I. Fáry, Sur la Courbure Totale d’une Courbe Gauche Faisant un Nœud, Bulletin de la Soc. Math. de France LXXVII (1949) 128–138.
[6] W. Fenchel, Uber Krummung und Windung geschlossener Raumkurven, Math. Ann. 101 (1929) 238–252.
[7] L.H. Kauffman, Knots and Physics, Series on Knots and Everything 1, World Scientific, 1991.
[8] L.H. Kauffman, Knots and Applications, Series on Knots and Everything 6, World Scientific, 1995.
[9] N. C. Lim, S. E. Jackon, Molecular knots in biology and chemistry, J. Phys.: Condens. Matter 27 (2015) 354101 (35pp) doi:10.1088/0953-

8984/27/35/354101
[10] J. W. Milnor, On the Total Curvature of Knots, The Annals of Mathematics, 2nd Ser., Vol 52. (1950) 248–257.
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