Article

Two Interval Upper-Bound Q-Function Approximations with Applications

 and Aleksandra Jovanović ${ }^{1, \mathbf{T}}$
1 Faculty of Electronic Engineering, University of Niš, Aleksandra Medvedeva 14, 18115 Niš, Serbia
2 Faculty of Sciences and Mathematics, University of Priština in Kosovska Mitrovica, Lole Ribara 29, 38220 Kosovska Mitrovica, Serbia
3 Faculty of Science and Mathematics, University of Niš, Višegradska 33, 18000 Niš, Serbia
* Correspondence: natasa.kontrec@pr.ac.rs
\dagger These authors contributed equally to this work.

Citation: Perić, Z.; Marković, A.; Kontrec, N.; Nikolić, J.; Petković, M.D.; Jovanović, A. Two Interval Upper-Bound Q-Function Approximations with Applications. Mathematics 2022, 10, 3590. https:/ / doi.org/10.3390/math10193590

Academic Editor: Danilo Costarelli

Received: 3 August 2022
Accepted: 27 September 2022
Published: 1 October 2022
Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affil iations.

Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

Abstract

The Gaussian Q-function has considerable applications in numerous areas of science and engineering. However, the fact that a closed-form expression for this function does not exist encourages finding approximations or bounds of the Q-function. In this paper, we determine analytically two novel interval upper bound Q-function approximations and show that they could be used efficiently not only for the symbol error probability (SEP) estimation of transmission over Nakagami-m fading channels, but also for the average symbol error probability (ASEP) evaluation for two modulation formats. Specifically, we determine analytically the composition of the upper bound Q-function approximations specified at disjoint intervals of the input argument values so as to provide the highest accuracy within the intervals, by utilizing the selected one of two upper bound Q-function approximations. We show that a further increase of the accuracy, achieved in the case with two upper-bound approximations composing the interval approximation, can be obtained by forming a composite interval approximation of the Q-function that assumes another extra interval and by specifying the third form for the upper-bound Q-function approximation. The proposed analytical approach can be considered universal and widely applicable. The results presented in the paper indicate that the proposed Q-function approximations outperform in terms of accuracy other well-known approximations carefully chosen for comparison purposes. This approximation can be used in numerous theoretical communication problems based on the Q-function calculation. In this paper, we apply it to estimate the average bit error rate (ABER), when the transmission in a Nakagami- m fading channel is observed for the assumed binary phase-shift keying (BPSK) and differentially encoded quadrature phase-shift keying (DE-QPSK) modulation formats, as well as to design scalar quantization with equiprobable cells for variables from a Gaussian source.

Keywords: Q-function; approximation; Nakagami-m fading; modulation formats

MSC: 33F05

