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Abstract. A hybrid accelerated model with two step length parameters for solving unconstrained op-
timization problems is presented. Applied hybridization process involves an efficient three term hybrid
method. The accelerated double step size model is taken as guiding operator in this hybridization process.
Defined method is convergent on the set of uniformly convex functions as well as on the set on strictly
convex quadratics. We display a Dolan Moré performance profiles of derived iteration and of some other
comparative hybrid and accelerated methods regarding the number of iterations and the number of function
evaluations metrics. Displayed numerical test results confirm that derived model keeps a good properties
of its forerunner method and outperform other comparative hybrid accelerated schemes.

1. Introduction

We present an accelerated hybrid gradient descent model with two step length parameters for solving
unconstrained optimization problems. Developed method belongs to the class of accelerated gradient
descent methods which is introduced in [23]. Also, it is based on three term hybrid relations from [8], and
therewith this method can be classified as a hybrid method. In paper [8] Khan proposed an efficient hybrid
set of three equations which presents an improved version of Ishikawa’s, Mann’s and Picard’s hybrid
models [7, 9, 18].

In [23], the authors presented an accelerated gradient SM method and showed that this iterative model
outperforms classical gradient descent GD method, as well as Andrei’s accelerated gradient AGD method
from [1]. Using the hybridization principle from [8], the authors in [15] derived a hybrid version of the
SM method and numerically proved that this method upgrades the SM model. Later on in [11] an initial
correction of the HSM iteration was taken. In the same paper, some improved performance characteristics
of modified HSM scheme, i.e. the MHSM method, was noticed.

Based on the Khans’ hybridization rule and on accelerated gradient method with two search direction
defined in [16], the authors in [17] determined hybrid accelerated double direction HADD model.

Still, the most important idea on which the determination of presented method is based on, can be found
in [12]. In this paper, an accelerated double step size unconstrained optimization method is presented and
denoted as ADSS method. Numerical tests confirmed that the ADSS method has better performance
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characteristics then the accelerated gradient SM method from [23]. The method presented in this paper is
generated as a hybrid version of the ADSS iteration, where the hybrid rule, with the adequate operator, is
defined as proposed in [8].

This paper is organized as follows. In the second Section we give an overview of some relevant
accelerated and hybrid optimization methods. The main idea is elaborated in the third Section wherein we
define a hybrid accelerated double step size model and determine the accelerated parameter value of so
derived iteration. In the fourth Section we prove convergence properties of our hybrid accelerated method
on the sets of uniformly convex and strictly convex quadratic functions. Results of numerical experiments
and comparative performance analysis are the contents of the last Section.

2. Optimization methods with accelerated and hybrid features

The research in this paper considers optimization models for solving unconstrained optimization prob-
lems. General formulation of these methods is given by the expression:

xk+1 = xk + tkdk, (1)

where, xk+1 is the next iterative value of the objective function f which is to be minimized (or maximized),
xk is the current function value, tk > 0 is iterative step length and dk is an iterative search direction. For
the goal function f : Rn

→ R we suppose that it is twice differentiable uniformly convex function. Further
on we use the following notations for the gradient and for the Hessian at the k − th iterative point of the
objective function respectively:

1k = 5 f (xk), Gk = 52 f (xk). (2)

From the expression (1) we can clearly see that the iterative step length value tk and iterative search direction
vector dk are the two main parameters which indicate the efficiency and convergence properties of a certain
optimization model.

The step size value can be calculated by the exact or inexact line search procedures. Practical researches
confirm the benefits of the inexact line search techniques when compared to the exact line search procedure.
That is so, mostly because, the inexact line search algorithms require less computational time. Among some
known inexact line search procedures, such as procedures of Wolfe, Powell, Goldstein, Armijo [3, 6, 21, 24],
within this paper we use Armijo’s Backtracking line search algorithm to determine the step length value
of each iteration. To be more precise, in this research we will use two different Backtracking line search
procedures, presented in [12] in order to determine two iterative step length values denoted as tk and pk:

Algorithm 1 The backtracking line search starting from t = 1. Calculation of the step size tk

Require: Objective function f (x), the direction dk of the search at the point xk and numbers
0 < σt < 0.5 and η1 ∈ (σt, 1).

1: Set t = 1.
2: While f (xk + tdk) > f (xk) + σtt1T

k dk take t := η1t.
3: Return tk = t.

Algorithm 2 The backtracking line search starting from p = 1. Calculation of the step size pk

Require: Objective function f (x), the direction dk of the search at the point xk and numbers
0 < σp < 0.5 and η2 ∈ (σp, 1).

1: Set p = 1.
2: While f (xk + pdk) > f (xk) + σpp1T

k dk take p := η2p.
3: Return pk = p.
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Regarding the search direction, the basic models are expressed through the Cauchy’s gradient descent
direction

dk = −1k (3)

and the Newton’s direction generated by the Hessian of the goal function

dk = −G−1
k 1k. (4)

There are many search directions induced by these previous two. Herein we mention only few. For example
in some conjugate gradient methods the search direction is determined in the next way:

lk =

{
−1k if k = 0
−1k + βklk−1 if k ≥ 1,

Here, βk is a scalar parameter which can be differently defined due to relevant method. In [5], βk is calculated
as

βk
FR =

1T
k 1k

1T
k−11k−1

. (5)

Therewith, in [19, 20], the value of the parameter β is obtained as next:

βk
PRP =

1T
k

(
1k − 1k−1

)
1T

k−11k−1
. (6)

During the development of gradient models, accelerated gradient descent methods were segregate as
a subclass of the class of gradient methods [23]. The essential fact which characterizes these schemes
is determination of the acceleration parameter. Usual way of computing this very important element is
through the features of Taylor’s expansion taken on the posed scheme. This way of accelerated parameter
determination is confirmed as a good choice [13]. We highlight here three accelerated parameter expressions
used in efficient accelerated double step size model, i.e. the ADSS method, in hybrid accelerated gradient
method, the HSM method, and in hybrid accelerated double direction method, the HADD scheme. These
three models are used in this paper as comparative methods.

γADSS
k+1 = 2

f (xk+1)− f (xk)+(αkγk
−1+βk)‖1k‖

2

(αkγk
−1+βk)2

‖1k‖
2

, ([12])

γHSM
k+1 = 2γk

γk[ f (xk+1)− f (xk)]+(αk+1)tk‖1k‖
2

(αk+1)2t2
k‖1k‖

2 , ([15])

γHADD
k+1 = 2

f (xk+1)− f (xk)−α1T
k (t2

k dk−tkγ−1
k 1k)

α2t2
k(tkdk−γ−1

k 1k)T(tkdk−γ−1
k 1k)

, ([17]).

3. Hybridization of accelerated double step size model

A hybrid model, defined as a set of relations, was first introduced by Picard [18]. Thereafter, Mann
exposed his hybrid scheme in [9]. Some others hybrid schemes are presented in [7, 8, 11, 15, 17].

In [15] a hybridization over accelerated gradient SM scheme, which is introduced in [23],was explained
and defined. In the same paper the authors proved convergence properties of so defined hybrid model
which they denoted as the HSM method. Displayed numerical outcomes confirm the improvement towards
the starting SM method.

Herein, we use the same idea in order to define a hybrid version of accelerated double step size model
defined in [12]. The ADSS method is defined by the next relation:

xk+1 = xk − tkγ
−1
k 1k − pk1k, (7)
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where xk+1 is the next iterative point, xk is the current one. Parameters tk and pk are two step lengths
computed by two deferentially initialized Backtracking procedures. Variable γk ≡ γADSS

k+1 stays for an
acceleration factor and it is obtained trough the features of Taylor’s series exposed on the scheme (7).

Using the hybridization process proposed in [15] and the expression of the ADSS method (7), we get
the following set of relations:

x1 = x ∈ R,
xk+1 = Tyk = yk − tkγ−1

k 1k − pk1k,

yk = (1 − αk)xk + αkTxk = (1 − αk)xk + αk(xk − tkγ−1
k 1k − pk1k) = xk − αk

(
tkγ−1

k + pk

)
1k. k ∈N.

(8)

In the previous three term relations, T : C→ C is the mapping on nonempty convex subset C of a normed
space E. Parameter {αk} ∈ (0, 1) is so called correction hybrid parameter. Now, we substitute yk from the
third equation of (8) into the second equation, precisely in Tyk expression. After this replacement, we obtain

xk+1 = xk − 1k(αk + 1)(tkγ
−1
k + pk), (9)

which presents the hybrid version of the ADSS. We denote this process as the HADSS method. It is obvious
that the HADSS scheme is accelerated gradient descent scheme with accelerated parameter γk ≡ γHADSS

k+1
which is to be derived. Before we calculate an iterative value of the accelerated factor, let us simplify the
relation (9) in next way:

xk+1 = xk − 1kα(tkγ
−1
k + pk). (10)

In (10) we do the following substitution: α ≡ αk + 1 ∈ (1, 2) ∀k. This way, we make practical computations
easier and theoretical analysis more concise.

Now, in order to determine the accelerated parameter γHADSS
k+1 , we exposed a second order Taylor series

of the scheme (10) :

f (xk+1) ≈ f (xk) + α
(
tkγ
−1
k + pk

)
‖1k‖

2 +
1
2
α2

(
tkγ
−1
k + pk

)
∇

2 f (ξ)
(
tkγ
−1
k + pk

)
‖1k‖

2. (11)

Here, for the parameter ξ the following is valid

ξ ∈ [xk, xk+1], ξ = xk + κ(xk+1 − xk) = xk − κα1k

(
tkγ
−1
k + pk

)
, 0 ≤ κ ≤ 1.

Instead of using the Hessian of posed iteration, ∇2 f (ξ), we put in the expression (11) appropriate scalar
matrix approximation γk+1I. Then the relation (11) is turned to:

f (xk+1) ≈ f (xk) + α
(
tkγ
−1
k + pk

)
‖1k‖

2 +
1
2
α2

(
tkγ
−1
k + pk

)2
∇

2 f (ξ)‖1k‖
2. (12)

Directly, from expression (12) we can calculate the value of the iterative acceleration factor of the HADSS
scheme:

γHADSS
k+1 = γk+1 = 2

f (xk+1) − f (xk) + α
(
tkγ−1

k + pk

)
‖1k‖

2

α2
(
tkγ−1

k + pk

)2
‖1k‖

2
. (13)

It’s important to consider the Second-Order Necessary Condition and Second-Order Sufficient Condi-
tion. Certainly, these two assumptions must be fulfilled. For that purpose we add the positivity condition
for the acceleration parameter: γHADSS

k+1 > 0. However, it may happen that iterative value of γHADSS
k+1 is a

negative one. In this case, we simply choose γHADSS
k+1 = 1. The next iterative point of the HADSS scheme will

then be calculated as:
xk+2 = xk+1 − α1k+1(tk+1 + pk+1).

Finally, we restate the Algorithm 3 which describes the main algorithm, termed as the HADSS algorithm.
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Algorithm 3 HADSS method

Require: 0 < ρ < 1, 0 < τ < 1, x0 ∈ Rn and α ∈ (1, 2).
1: Set k = 0. For given x0, take γ0 = 1 and calculate f (x0) and 1(x0).
2: If the condition ‖1k‖ < ε is fulfilled, then return xk, f (xk) and stop the algorithm, else continue by the

next step.
3: Compute the iterative step lengths, tk and pk by Algorithms 1 and 2 respectively.
4: Compute xk+1 using (10), then calculate f (xk+1) and 1k+1.
5: Calculate the approximation parameter γk+1 using (13).
6: If γk+1 < 0 take γk+1 = 1.
7: Set k := k + 1 and go to Step 2.
8: Return xk+1 and f (xk+1).

4. Convergence properties of the HADSS iteration

We analyze herein the convergence properties of derived hybrid accelerated scheme with two itera-
tive step length parameters. In this regard, we consider uniformly convex and strictly convex quadratic
functions.

On the set of uniformly convex functions the next statements are valid (related proofs can be found in
[10, 22]).

Proposition 4.1. [10, 22] If the function f : Rn
→ R is twice continuously differentiable and uniformly convex on

Rn then:
1. the function f has a lower bound on L0 = {x ∈ Rn

| f (x) ≤ f (x0)}, where x0 ∈ Rn is available;
2. the gradient 1 is Lipschitz continuous in an open convex set B which contains L0, i.e. there exists L > 0 such

that

‖1(x) − 1(y)‖ ≤ L‖x − y‖, ∀x, y ∈ B. (14)

Lemma 4.1. [10, 22] Under the assumptions of Proposition 4.1 the real numbers m, M exist therein satisfying

0 < m ≤ 1 ≤M, (15)

such that f (x) has an unique minimizer x∗ and

m‖y‖2 ≤ yT
5

2 f (x)y ≤M‖y‖2, ∀x, y ∈ Rn; (16)

1
2

m‖x − x∗‖2 ≤ f (x) − f (x∗) ≤
1
2

M‖x − x∗‖2, ∀x ∈ Rn; (17)

m‖x − y‖2 ≤ (1(x) − 1(y))T(x − y) ≤M‖x − y‖2, ∀x, y ∈ Rn. (18)

Now, based on the previous two statements we are able to reveal what is the value of the iterative
decreasing of the objective function when the HADSS scheme is applied. This is the contents of the
following lemma.

Lemma 4.2. Let the function f be a twice continuously differentiable and uniformly convex onRn and let the sequence
{xk} be generated by Algorithm 3. Then

f (xk) − f (xk+1) ≥ µ
∥∥∥1k

∥∥∥2
, (19)

where

µ = min

 σt

M
,
σt (1 − σt)

L
η1, σp,

σp

(
1 − σp

)
L

η2

 . (20)
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Proof. The proof of this Lemma is similar to the proof of the relevant Lemma from [12] after we substitute
parameters σα and σβ by σt and σp respectively.

In the next theorem we confirm that the HADSS method is at least linearly convergent on the set of
uniformly convex and twice continuously differentiable functions. This theorem can be proved the same
way as the adequate theorem (4.1) in [23].

Theorem 4.1. For the twice continuously differentiable and uniform convex function f on Rn and the sequence {xk}

generated by Algorithm 3 the next holds:

lim
k→∞

∥∥∥1k

∥∥∥ = 0. (21)

In this regard, the sequence {xk} converges to the optimal solution at least linearly.

Convergence properties of defined HADSS scheme can be proved as well on the set of strictly convex
quadratics. Strictly convex quadratic functions are expressed by the following equation

f (x) =
1
2

xTAx − bTx. (22)

In previous relation (22) A is a real n × n symmetric positive definite matrix and b ∈ Rn is a given vector of
real numbers. We denote by λ1 and λn the smallest and the largest eigenvalues of the matrix A respectively.

Lemma 4.3. Assume that f is the strictly convex quadratic function defined by (22), where A ∈ Rn×n is symmetric
positive definite matrix. Then, for the smallest and the largest eigenvalues of A, λ1 and λn, the following estimations
are true when the hybrid accelerated double step size model (10) is applied:

1
λ1

+ 1 ≥ α
(
tk+1γ

−1
k+1 + pk+1

)
≥

1
2λn

(
σt + σp

)
. (23)

Proof. We start with evaluating the value of function decreasing in two successive iterative points:

f (xk+1) − f (xk) =
1
2

xT
k+1Axk+1 − bTxk+1 −

1
2

xT
k Axk + bTxk. (24)

Knowing that the gradient of the function (22) is 1k = Axk − b, after applying the relation of the HADSS
scheme and the symmetry condition (1T

k A1k = 1kA1T
k ), we obtain the next calculations:

f (xk+1) − f (xk) =
1
2

(xk − α1k(tkγ
−1
k + pk))TA(xk − α1k(tkγ

−1
k + pk))

− bT(xk − α1k(tkγ
−1
k + pk)) −

1
2

xT
k Axk + bTxk

= −αtkγ
−1
k xT

k A1k − αpkxT
k A1k − α

2tkpkγ
−1
k 1

T
k A1k

+
1
2
α2t2

kγ
−2
k 1

T
k A1k +

1
2
α2p2

k1
T
k A1k + αtkγ

−1
k bT1k + αpkbT1k

= −αtkγ
−1
k (xT

k A − bT)1k − αpk(xT
k A − bT)1k +

α2

2
(t2

kγ
−2
k + 2tkpkγ

−1
k + p2

k)1T
k A1k

= −αtkγ
−1
k 1

T1k − αpk1
T1k +

α2

2
(tkγ

−1
k + pk)21TA1k

= −α(tkγ
−1
k + pk)1T1k +

α2

2
(tkγ

−1
k + pk)21TA1k.

Now, we replace derived equality

f (xk+1)− f (xk) = −α(tkγ
−1
k + pk)1T1k +

α2

2
(tkγ

−1
k + pk)21TA1k
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into the relation (13):

γk+1 = 2

(
−α(tkγ−1

k + pk)1T1k + α2

2 (tkγ−1
k + pk)21TA1k

)
+ α

(
tkγ−1

k + pk

)
1T1k

α2
(
tkγ−1

k + pk

)2
1T1k

.

Elementary calculations lead us to

γk+1 =
α2

(
tkγ−1

k + pk

)2
1TA1k

α2
(
tkγ−1

k + pk

)2
1T1k

=
1TA1k

1T1k
. (25)

Last obtained relation proves that γk+1 is the Rayleigh quotient of the real symmetric matrix A at the vector
tkγ−1

k + pk. Therewith, we can conclude the following:

λ1 ≤ γk+1 ≤ λn, k ∈N. (26)

Knowing that 0 ≤ tk, pk ≤ 1 and considering the previous (26) we prove the left hand side in inequalities
(23)

1
λ1

+ 1 ≥ α
(
tk+1γ

−1
k+1 + pk+1

)
.

In order to prove the right hand side of (23), we use the inequalities [12, eq. (4.13)] and [23, eq. (4.8)].
Transformed through notation used in this paper, these two inequalities are:

tk >
η1(1 − σt)γk

L
, (27)

pk >
η2(1 − σt)

L
. (28)

We are using the fact that the eigenvalue λn of matrix A has the property of Lipschitz constant L, as well.
This is truly so since the matrix A is symmetric and 1(x) = A(x) − b. All of these give:

‖1(x) − 1(y)‖ = ‖Ax − Ay‖ = ‖A(x − y)‖ ≤ ‖A‖‖x − y‖ = λn‖x − y‖. (29)

To finish the proof of the right hand side of the inequalities (23) now we can apply the following estimations

α
(
tk+1γ

−1
k+1 + pk+1

)
≥ α

(
η1(1 − σt)

L
γkγ

−1
k + η2(1 − σp)L

)
=
α
L

(
η1(1 − σt) + η2(1 − σp)

)
>
α
λn

(σt ·
1
2

+ σp ·
1
2

)

=
α

2λn

(
σt + σp

)
.

which completes the proof of the lemma.

Theorem 4.2. Assume that for the the largest and the smallest eigenvalues of symmetric positive definite matrix A
the following condition is fulfilled

λn <
2λ1

1 + λ1
. (30)

Therewith, let the iterations (10) be applied on strictly convex quadratic function f which is defined by the relation
(22). Then, the next holds:

(dk+1
i )

2
≤ δ2(dk

i )
2 (31)
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where

δ = max
{
1 −

λ1

2λn

(
σt + σp

)
, λn

( 1
λ1

+ 1
)
− 1

}
, (32)

and dk
i ∈R, k, i,n ∈N. Furthermore,

lim
k→∞
‖gk‖ = 0. (33)

Proof. Assume that {v1, v2, . . . , vn} is the set of the orthonormal eigenvectors of symmetric positive definite
matrix A. Applying the Algorithm 3 we can generate the sequence of values {xk}. We are familiar with the
fact that gk = Axk − b for some k and chosen iterative value xk. Than again, the next expression is also true

gk =

n∑
i=1

dk
i vi, (34)

for some constants dk
1, d

k
2, . . . , d

k
n∈R.

Applying (10) there we get

gk+1 = Axk+1 − b = A(xk − αtkγ
−1
k gk − αpkgk) − b

= Axk − αtkγ
−1
k Agk − αpkAgk − b = gk − αtkγ

−1
k Agk − αpkAgk

=
(
I − αtkγ

−1
k A − αpkA

)
gk.

(35)

Taking (34) produces

gk+1 =

n∑
i=1

dk+1
i vi =

n∑
i=1

(
1 − αtkγ

−1
k λi − αpkλi

)
dk

i vi. (36)

Now, in order to prove (31), we need to confirm that |1 − αλi

(
tkγ−1

k + pk

)
| ≤ δ. Practically, we analyze

two cases:

1.
αλi

(
tkγ
−1
k + pk

)
≤ 1.

Previous assumption implies following estimations:

1 ≥ αλi

(
tkγ
−1
k + pk

)
≥
λ1

2λn

(
σt + σp

)
=⇒ 1 − αλi

(
tkγ
−1
k + pk

)
≤ 1 −

λ1

2λn

(
σt + σp

)
≤ δ.

(37)

2.
αλi

(
tkγ
−1
k + pk

)
> 1.

From this presumption we have:

1 < αλi

(
tkγ
−1
k + pk

)
≤ λn

( 1
λ1

+ 1
)

=⇒ |1 − αλi

(
tkγ
−1
k + pk

)
| ≤ λn

( 1
λ1

+ 1
)
− 1 < δ.

(38)

Under the posed condition (30) the following two inequalities are valid
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•

0 <
λ1

2λn

(
σt + σp

)
< 1 =⇒ 0 < 1 −

λ1

2λn

(
σt + σp

)
< 1 (39)

•

λn

( 1
λ1

+ 1
)
>
λ1

λ1
+ λ1 > 1 =⇒ 0 < λn

( 1
λ1

+ 1
)
− 1 <

2λ1

1 + λ1

1 + λ1

λ1
− 1 = 1 (40)

which confirm that parameter δ∈ (0, 1).

Finally, to prove (33) we use representation (34) and the fact that {v1, v2, . . . , vn} is an orthonormal system
of eigenvectors. These facts lead us to the following relation

‖1k‖
2 =

n∑
i=1

(
dk

i

)2
. (41)

Since we previously showed that the parameter δunder condition (30) satisfies 0 < δ < 1, the final conclusion

lim
k→∞
‖1k‖ = 0

is evident.

5. Numerical comparisons

In this section, a performance profiles regarding tested metrics of four comparative models are presented.
We tested the performance of following four methods: HADSS, ADSS, HSM and HADD. We naturally chose
the ADSS method as the comparatione model since derived HADSS iteration originates from it. We also
selected the HSM process for comparatione because it is determined on the same hybrid basis as the HADSS
model. In [12] the author numerically confirmed that the ADSS method outperforms the SM method as
well as the accelerated double direction ADD method presented in [16]. Taking the similar analysis in [15]
the dominance of the HSM iteration among the other two comparative methods, which are its forerunner
SM method and the Nestorov’s accelerated gradient method with line search i.e. NLS method, is proved.
In order to complete this numerical research we included one more hybrid accelerated scheme, the HADD
method, presented in [17].

We chose to analyze the next two characteristics of all tested methods: needed number of iterations and
number of function evaluations. Numerical tests are based on total 1200 test outcomes, which involves
30 test functions from [2]. On each chosen test function all four comparative methods were applied for
the next 10 different number of parameters:1000, 2000, 3000, 5000, 7000, 8000, 10000, 15000, 20000, 30000. All
tests are implemented on a Workstation Intel Celeron 1.6 GHz. The usual stopping criteria were taken:

‖gk‖ ≤ 10−6 and
| f (xk+1) − f (xk)|

1 + | f (xk)|
≤ 10−16.

In backtracking procedures we used the next values for required parameters σ1 = 0.0001, η1 = 0.8, σ1 =
0.0002, η1 = 0.9.

For displaying the performance features of analyzed comparative models, i.e. the efficiency of derived
HADSS algorithm versus ADSS, HSM and HADD iterations, we use Dolan and Moré’s performance profiles
of tested metrics [4]. We present the Dolan-Moré’s performance profiles subject to the number of iterations
and number of function evaluations in Figure 5. From both displays in Figure 5, (left) and (right), we see that
the HADSS and the ADSS methods are evidently more robust and more efficient and that these two models
convincingly upgrade the HSM and the HADD algorithms. Therewith, an interesting similar behaviors
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Figure 5.1.(Left) Performance profiles regarding the number of iterations metric
(Right) Performance profiles regarding the function evaluations metric

of the HADSS and ADSS iterations regarding both analyzed metrics can be spotted. This fact points that
the hybrid version of the ADSS model at least keeps the same good characteristics as its forerunner. Still,
the HADSS has significant better performance profiles subject to the number of iterations and number of
function evaluations metrics than hybrid HSM and HADD methods which are defined based on the same
hybridization rule.
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6. Conclusion

We present a hybrid accelerated double step size method, equipped with two Backtracking line search
procedures, for solving unconstrained optimization problems. This method is generated using three term
hybrid rule where for the guiding operator we take the accelerated double step size iteration. Defined
hybrid accelerated process is convergent on the sets of uniformly convex and strictly convex quadratic
functions. Numerical analysis confirms that derived method is effective for the large scale of test functions.
Presented HADSS schemes shows efficient and robust performance subject to the number of iterations
and the number of function evaluations metrics, which is very similar to behavior of its forerunner ADSS
method. Intensive numerical comparisons, taken on 1200 optimization problems of different dimensions,
show that derived method convincingly outperforms hybrid accelerated HSM and HADD methods which
are defined based on the same hybridization rule as the HADSS scheme. Dolan-Moré’s performance profiles
subject to analyzed metrics are used to illustrate the efficiency and the robustness of proposed optimization
model.
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