

Optics EXPRESS

Transmission performance of multimode W-type microstructured polymer optical fibers

BRANKO DRLJAČA,¹ Svetislav Savović,^{2,3} Milan S. Kovačević,² Ana Simović,² Ljubica Kuzmanović,² Alexandar Djordjevich,³ and Rui Min^{4,*}

¹ Faculty of Sciences and Mathematics, University of Priština in Kosovska Mitrovica, L. Ribara 29, Kosovska Mitrovica, 38220, Serbia

²Faculty of Science, University of Kragujevac, R. Domanovića 12, 34000 Kragujevac, Serbia

³Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China

⁴Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Zhuhai 519087, China

^{*}rumi@doctor.upv.es

Abstract: By solving the time-independent power flow equation (TI PFE), we study mode coupling in a multimode W-type microstructured polymer optical fiber (mPOF) with a solid-core. The multimode W-type mPOF is created by modifying the cladding layer and reducing the core of a multimode singly clad (SC) mPOF. For such optical fiber, the angular power distributions, the length L_c at which an equilibrium mode distribution (EMD) is achieved, and the length z_s for establishing a steady state distribution (SSD) are determined for various arrangements of the inner cladding's air-holes and different launch excitations. This information is useful for the implement of multimode W-type mPOFs in telecommunications and optical fiber sensors.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement