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Abstract: Within this manuscript we generalize the two recently obtained results of O. Popescu
and G. Stan, regarding the F-contractions in complete, ordinary metric space to 0-complete partial
metric space and 0-complete metric-like space. As Popescu and Stan we use less conditions than
D. Wardovski did in his paper from 2012, and we introduce, with the help of one of our lemmas,
a new method of proving the results in fixed point theory. Requiring that the function F only be
strictly increasing, we obtain for consequence new families of contractive conditions that cannot be
found in the existing literature. Note that our results generalize and complement many well-known
results in the fixed point theory. Also, at the end of the paper, we have stated an application of our
theoretical results for solving fractional differential equations.
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1. Introduction and Preliminaries

Our exposition starts by looking back on some basic concepts, notations, and estab-
lished results for metric, metric-like and partial metric spaces.

Metric spaces were introduced in 1906 by Maurice Fréchet in his seminal work [1]
as follows:

Definition 1. Let X be a nonempty set. A mapping dm : X2 → [0,+∞) is said to be a metric on
X if for all x̄, ȳ, z̄ ∈ X the following three conditions hold:

(dm1) dm(x̄, ȳ) = 0 if and only if x̄ = ȳ;
(dm2) dm(x̄, ȳ) = dm(ȳ, x̄);
(dm3) dm(x̄, z̄) ≤ dm(x̄, ȳ) + dm(ȳ, z̄).

If dm is a metric on X, then the pair (X, dm) is said to be a metric space. The theory of
metric spaces contains several branches of mathematical analysis: real analysis, complex
analysis and multidimensional analysis (for more details, see [2]).

Partial metric spaces were introduced in 1994 by Matthews [3] as follows.

Definition 2. Let X be a nonempty set. A mapping dpm : X2 → [0,+∞) is said to be a partial
metric on X if for all x̄, ȳ, z̄ ∈ X the following four conditions hold:

(dpm1) x̄ = ȳ if and only if dpm(x̄, x̄) = dpm(x̄, ȳ) = dpm(ȳ, ȳ);
(dpm2) dpm(x̄, x̄) ≤ dpm(x̄, ȳ);
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(dpm3) dpm(x̄, ȳ) = dpm(ȳ, x̄);
(dpm4) dpm(x̄, z̄) ≤ dpm(x̄, ȳ) + dpm(ȳ, z̄)− dpm(ȳ, ȳ).

Then, the pair (X, dpm) is called a partial metric space. It can be checked that every
metric space is also a partial metric space. The opposite is not true. In that spirit, let
X = [0,+∞) and partial metric be defined as dpm(x, y) = max{x, y}. Under these circum-
stances (X, dpm) constitutes a partial metric space but it does not constitute a metric space,
since dpm(1, 1) = 1 > 0. To acquire more details on this, we point to following works [4–9]:

Metric-like spaces were introduced in 2012 by A. Amini Harandi [10] in following way:

Definition 3. Let X be a nonempty set. A mapping dml : X2 → [0,+∞) is said to be a metric-like
on X if for x̄, ȳ, z̄ ∈ X the following three conditions hold:

(dml1) dml(x̄, ȳ) = 0 yields x̄ = ȳ;
(dml2) dml(x̄, ȳ) = dml(ȳ, x̄);
(dml3) dml(x̄, z̄) ≤ dml(x̄, ȳ) + dml(ȳ, z̄).

The pair
(

X, dml
)

is called a metric-like space or dislocated metric space in some

papers. A metric-like mapping dml on X satisfies all the conditions of a metric except that
dml(x, x) may be positive for some x ∈ X. Below we assemble a short list of representative
examples of partial metric and metric-like spaces:

1. (R, dpm), where dpm(x̄, ȳ) = max{|x̄|, |ȳ|} for all x̄, ȳ ∈ R.
It can be seen that (R, dpm) is a partial metric space, and a metric-like space, but it is

not a metric space, due to the fact that dpm(|−2|, |−2|) = 2 > 0.
2.
(
[0,+∞), dml

)
, where dml(x̄, ȳ) = x̄ + ȳ for all x̄, ȳ ∈ [0,+∞).

It can be checked that
(
[0,+∞), dml

)
is a metric-like space where dml(x̄, x̄) > 0

for each x̄ > 0. Since dml(2, 2) = 2 + 2 = 4 > 3 = 2 + 1 = dml(2, 1), it follows that
dml(x̄, x̄) ≤ dml(x̄, ȳ) does not hold. Hence,

(
[0,+∞), dml

)
is not a partial metric space.

3.
(

X, dml
)

, where X = {0, 1, 2} and dml(0, 0) = dml(1, 1) = 0, dml(2, 2) = 5
2 ,

dml(0, 2) = dml(2, 0) = 2, dml(1, 2) = dml(2, 1) = 3, dml(0, 1) = dml(1, 0) = 3
2 .

Also, it can be seen that
(

X, dml
)

is a metric-like (that is a dislocated metric) space

with dml(2, 2) > 0. This means that
(

X, dml
)

is not a standard metric space. However,(
X, dml

)
also is not a partial metric space, because dml(2, 2) � dml(2, 0).

4.
(

X, dml
)

, where X = C([0, 1],R) is the set of real continuous functions on [0, 1] and

dml(u, v) = supt∈[0,1](|u(t)|+ |v(t)|) for all u, v ∈ C([0, 1],R).
This is an example of metric-like space that is not a partial metric space. Indeed,

for u(t) = 2t, we obtain dml(u, u) = supt∈[0,1](2t + 2t) = 4 > 0. Putting v(t) ≡ 0 for all

t ∈ [0, 1], we obtain that dml(u, u) = 4 � dml(u, v) = dml(u, 0) = 2.
We note here that some of the metric-like spaces exemplified in the former list do not

represent partial metric spaces. We also note that a partial metric space also represents a
metric-like space but the opposite is not true. In the sequel, we will give the definitions
related to sequences in metric-like spaces, on their convergence and Cauchyness (for more
details, see [7,9–13]).

Definition 4. Let {xn} be a sequence in a metric-like space
(

X, dml
)

.

(i) {xn} is said to converge to x̄ ∈ X if limn→+∞ dml(xn, x̄) = dml(x̄, x̄);

(ii) {xn} is said to be dml−Cauchy in
(

X, dml
)

if limn,p→+∞ dml(xn, xp
)

exists and is finite;
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(iii) A metric-like space
(

X, dml
)

is dml−complete if for every dml−Cauchy sequence {xn}
in X there exists an x ∈ X such that

lim
n,p→+∞

dml(xn, xp
)
= dml(x, x) = lim

n→+∞
dml(xn, x). (1)

Interested readers can find more details on metric-like and partial metric spaces in
following selected references (e.g., [3,6,7,9–12]). Further investigation on generalization of
metric spaces to other classes of generalized metric spaces and on definition of contractive
mappings can be found in variety of papers [2,13–20]:

Remark 1. Following remark is valid for the metric-like spaces, and also in the case of par-
tial metric spaces. Notably, as examples in Remark 1.4 (1) and (2) in [6] illustrate, a sequence
doesn’t need to have a unique limit and a convergent sequence doesn’t need to be a dml−Cauchy
sequence. On the other hand, if the sequence {xn} is dml−Cauchy sequence in a way that
limn,p→+∞ dml(xn, xp

)
= 0 holds in dml−complete metric-like space

(
X, dml

)
, then such a se-

quence has a unique limit. Demonstrably, in such a case if xn → x as n → +∞, we get that
dml(x, x) = 0 (from condition (iii) of Definition 4). Now, if xn → x, xn → y and x 6= y, we get

dml(x, y) ≤ dml(x, xn) + dml(xn, y)→ dml(x, x) + dml(y, y) = 0 + 0 = 0.

Under the condition (dml1) from Definition 3, what follows is that x = y, which forms
a contradiction.

Otherwise, the sequence {xn}n∈N in metric-like space
(

X, dml
)

is called 0− dml−Cauchy

if limn,p→+∞ dml(xn, xp
)
= 0. In this case the metric-like space

(
X, dml

)
is 0− dml−complete

if in it each 0− dml−Cauchy sequence is convergent. Since every 0− dml−Cauchy sequence
is dml−Cauchy it yields that dmp−complete partial metric space is 0− dml−complete.

In the continuation of our exposition we present some statements valid for metric-like
spaces, for which the proofs are immediate.

Proposition 1. Let
(

X, dml
)

be a metric-like space and {xn} be a sequence in it. Then we have
the following:

(i) If {xn} converges to x̄ ∈ X as n → +∞ and if dml(x̄, x̄) = 0, then for all ȳ ∈ X it follows
that dml(xn, ȳ)→ dml(x̄, ȳ);

(ii) If dml(x̄, ȳ) = 0 then dml(x̄, x̄) = dml(ȳ, ȳ) = 0;

(iii) If limn→+∞ dml(xn, xn+1) = 0 then limn→+∞ dml(xn, xn) =

limn→+∞ dml(xn+1, xn+1) = 0;

(iv) If x̄ 6= ȳ then dml(x̄, ȳ) > 0;

(v) dml(x̄, x̄) ≤ 2
n

n
∑

i=1
dml(x̄, xi) holds for all x̄, xi ∈ X, where 1 ≤ i ≤ n;

(vi) Let limn→+∞ dml(xn, xn+1) = 0. If limn,p→+∞ dml(xn, xp
)
6= 0, then there exists ε > 0

and sequences {n(k)} and {p(k)} such that n(k) > p(k) > k, and the following sequences
tend to ε+ when k→ +∞ :

dml
(

xn(k), xp(k)

)
, dml

(
xn(k)+1, xp(k)

)
, dml

(
xn(k), xp(k)−1

)
, dml

(
xn(k)+1, xp(k)−1

)
.

If the condition (vi) is satisfied then the sequences dml
(

xn(k)+q, xp(k)

)
and

dml
(

xn(k)+q, xp(k)+1

)
also converge to ε+ when k→ +∞, where q ∈ N. For more details on

(i)–(vi) the reader can see [7,13].
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(vii) If {xn}n∈N∪{0} is a Picard sequence in a metric-like space
(

X, dml
)

induced by a mapping

T : X → X and if dml(xn, xn+1) < dml(xn−1, xn) for all n ∈ N then xn 6= xm whenever
n 6= m.

In 2012, Wardowski [21] introduced a new type of mapping T : X → X named
F−contraction by defining a list of properties for the function F : (0,+∞)→ (−∞,+∞)

(F1): F is strictly increasing, i.e., 0 < α < β yields F(α) < F(β);

(F2): For each sequence {αn}n∈N in (0,+∞), limn→+∞ αn = 0 if and only if limn→+∞ F(αn) =
−∞; and

(F3): There exists k ∈ (0, 1) such that limα→0+ αkF(α) = 0,
and proved a fixed point result as a generalization of the Banach contraction principle
in different way. By F we denote a family of functions satisfying properties (F1–F3).

Definition 5 ([21]). Let (X, d) be a metric space. A mapping T : X → X is called an F-contraction
if there exists τ > 0 such that

τ + F(d(Tx, Ty)) ≤ F(d(x, y)) (2)

for all x, y ∈ X with d(Tx, Ty) > 0, where F satisfies (F1), (F2) and (F3).

On the same line Secelean [20] changed the condition (F2) of [21] by an equivalent
condition,
(F2’)’: inf F = −∞ or, also, by

(F2”): there exists a sequence {αn}n∈N of positive real numbers such that limn→+∞ F(αn) =
−∞;
and later Piri and Kumam [18] replaced condition (F3) of [21] by

(F3’): F is continuous on (0,+∞).
Authors in [22] take (F1) of [21] and (F3’) of [18] and denote the class of functions
satisfying (F1) and (F3’) by4F. For more new results in this subject see [16,23–27].

2. Main Results

After giving the overview of the results related to metric, partial metric and metric-like
spaces, as well as recollecting the notion of an F-contraction, the properties of function
family involved with it, as well as some recent variations of the required set of function
properties, we move to the main goal of the paper, which is an attempt to generalize,
complement, unify, enrich and extend all the results recently obtained in [24]. Namely,
firstly in [28] authors introduced and proved the following:

Definition 6 ([28]). Let (X, d) be a metric space. A mapping T : X → X is called an F-contraction
of Hardy-Rogers-type if there exist τ > 0 and F ∈ F such that

τ + F(d(Tx, Ty)) ≤ F(A(x, y)) (3)

holds for any x, y ∈ X with d(Tx, Ty) > 0, where A(x, y) = α · d(x, y) + β · d(x, Tx) +
γ · d(y, Ty) + δ · d(x, Ty) + L · d(y, Tx), α, β, γ, δ, L are non-negative numbers, γ 6= 1 and
α + β + γ + 2δ = 1.

Theorem 1 ([28]). Consider (X, d) to be a complete metric space and let T be a mapping of X
into itself. If one assumes that T is an F-contraction of Hardy-Rogers- type, with γ 6= 1, then the
mapping T has a fixed point. Further, if α + β + L ≤ 1 holds, then the fixed point of the mapping T
is unique.

After that, authors in [24] proved the next proper generalization of results from [28]:
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Theorem 2 ([24]). Let T be a self-mapping of a complete metric space X. Suppose that there exists
τ > 0 such that for all x, y ∈ X, d(Tx, Ty) > 0 yields

τ + F(d(Tx, Ty)) ≤ F(A(x, y)), (4)

where F : (0,+∞) → (−∞,+∞) is a strictly increasing mapping, A(x, y) = α · d(x, y) +
β · d(x, Tx) + γ · d(y, Ty) + δ · d(x, Ty) + L · d(y, Tx), α, β, γ, δ, L are non-negative numbers,
δ < 1

2 , γ < 1, α + β + γ + 2δ = 1, 0 < α + δ + L ≤ 1. Then T has a unique fixed point x∗ ∈ X
and for every x ∈ X the sequence {Tnx}n∈N converges to x∗.

Second new generalization given also in [24] shows that the monotonicity of F is not a
necessary condition.

Theorem 3 ([24]). Let T be a self-mapping of a complete metric space X. If we assume that there
exists τ > 0 such that for all x̄, ȳ ∈ X, d(Tx̄, Tȳ) > 0 the following holds

τ + F(d(Tx̄, Tȳ)) ≤ F(d(x̄, ȳ)), (5)

where F : (0,+∞)→ (−∞,+∞) is a mapping satisfying conditions (F2) and (F3”), where
(F3”): F is continuous on (0, α), with α being a positive real number.

Then, the mapping T has a unique fixed point x∗ ∈ X and for every x̄ ∈ X the sequence
{Tn x̄}n∈N converges to x∗.

As our first result in this section are new contractive conditions that follow from the
previous two theorems. They complement the ones given in [19,29]. Here we formulate
the following:

Corollary 1. Let (X, d) be a complete metric space and T : X → X be a self-mapping. Suppose
that there exist τi > 0, i = 1, 6 such that for all x, y ∈ X the following inequalities hold:

τ1 + d(Tx, Ty) ≤ A(x, y), (6)

τ2 + exp(d(Tx, Ty)) ≤ exp(A(x, y)), (7)

τ3 −
1

d(Tx, Ty)
≤ − 1

A(x, y)
, (8)

τ4 −
1

d(Tx, Ty)
+ d(Tx, Ty) ≤ − 1

A(x, y)
+ A(x, y), (9)

τ5 +
1

1− exp(d(Tx, Ty))
≤ 1

1− exp(A(x, y))
, (10)

τ6 +
1

exp(−d(Tx, Ty))− exp(d(Tx, Ty))
≤ 1

exp(−A(x, y))− exp(A(x, y))
, (11)

where A(x, y) = α · d(x, y) + β · d(x, Tx) + γ · d(y, Ty) + δ · d(x, Ty) + L · d(y, Tx), while
α, β, γ, δ, L are non-negative numbers, δ < 1

2 , γ < 1, α + β + γ + 2δ = 1, 0 < α + δ + L ≤ 1
Then in each of these cases, there exists x∗ ∈ X such that Tx∗ = x∗ and for every x ∈ X the
sequence {Tnx}n∈N∪{0} converges to x∗

Proof. As each of the functions F1(ξ) = ξ, F2 = exp ξ, F3(ξ) = − 1
ξ , F4(ξ) = − 1

ξ +

ξ, F5(ξ) =
1

1−exp ξ , F6(ξ) =
1

exp(−ξ)−exp ξ
is strictly increasing on (0,+∞), the proof immedi-

ately yields by Theorem 2. It is clear that the proofs for (8–10) yields also by Theorem 3.

Our second new result in this section is extending of Theorems 2 and 3 from standard
metric to partial metric space. That is, we give the next:
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Theorem 4. Let T be a self-mapping of a 0-complete partial metric space (X, dpm). Suppose there
exists τ > 0 such that for all x, y ∈ X, dpm(Tx, Ty) > 0 yields

τ + F(dpm(Tx, Ty)) ≤ F(A(x, y)), (12)

where F : (0,+∞) → (−∞,+∞) is a strictly increasing mapping, A(x, y) = α · dpm(x, y) +
β · dpm(x, Tx) + γ · dpm(y, Ty) + δ · dpm(x, Ty) + L · dpm(y, Tx), α, β, γ, δ, L are non-negative
numbers δ < 1

2 , γ < 1, α + β + γ + 2δ + L = 1, 0 < α + δ + L ≤ 1. Then T has a unique fixed
point x∗ ∈ X and for every x ∈ X the sequence {Tnx}n∈N∪{0} converges to x∗.

Proof. First of all, (12) yields that

dpm(Tx, Ty) < A(x, y), (13)

whenever dpm(Tx, Ty) > 0. In the first step, we show that T has a unique fixed point if it
exists. Indeed, let x 6= y be two distinct fixed points of T. From (13) follows

dpm(x, y) < α · dpm(x, y) + β · dpm(x, x) + γ · dpm(y, y) + δ · dpm(x, y) + L · dpm(y, x)

= (α + 0 + 0 + δ + L) · dpm(x, y). (14)

Since, x 6= y then dpm(x, y) > 0, therefore (14) yields 1 < α + 0 + 0 + δ + L =
α + δ + L ≤ 1. But, this is a contradiction.

Now, we consider the Picard’s sequence xn = Txn−1, n ∈ N induced by an arbitrary
point x0 ∈ X. If xp = xp+1 for some p ∈ N then xp is a unique fixed point of T. Therefore,
assume that xn 6= xn+1 for all n ∈ N∪{0}. For this case, according to (13) we get:

dpm(xn, xn+1) = dpm(Txn−1, Txn) < A(xn−1, xn), (15)

where A(xn−1, xn) = α · dpm(xn−1, xn) + β · dpm(xn−1, xn) + γ · dpm(xn, xn+1)
+δ · dpm(xn−1, xn+1) + L · dpm(xn, xn) ≤ (α + β + δ + L) · dpm(xn−1, xn)
+(γ + δ) · dpm(xn, xn+1). For the proof of the last inequality we used (dpm2) with x =
xn−1, y = xn as well as (dpm4) with x = xn−1, z = xn+1. Further, (15) and the last
inequality imply

(1− γ− δ) · dpm(xn, xn+1) < (α + β + δ + L) · dpm(xn−1, xn) (16)

Since, α + β + γ + 2δ + L = 1 it follows that 1− γ− δ > 0. Indeed, if 1− γ− δ ≤ 0
then 1 = α + β + γ + 2δ + L ≥ α + β + γ + δ + L + 1, i.e., α + β + γ + δ + L ≤ 0. This
means that α = β = γ = δ = L = 0, that is, γ = 1. But this is a contradiction. Now, further
(16) yields

dpm(xn, xn+1) <
α + β + δ + L

1− γ− δ
· dpm(xn−1, xn) = dpm(xn−1, xn), (17)

for all n ∈ N. Since, the sequence {dpm(xn, xn+1)}n∈N is strictly decreasing, so there exists
limn→+∞ dpm(xn, xn+1) = d∗ ≥ 0. Suppose that d∗ > 0.

By the other hand (12) became

τ + F(dpm(xn, xn+1)) ≤ F(µ · dpm(xn−1, xn) + (1− µ) · dpm(xn, xn+1)), (18)

where µ = α + β + δ + L. Since F is strictly increasing there exists limξ→d∗ F(ξ) = F(d∗+),
so taking the limit as n→ +∞ in (18) we get τ+ F(d∗+) ≤ F(d∗+), which is a contradiction.
Hence, limn→+∞ dpm(xn, xn+1) = 0.
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Now, we can show that {xn}n∈N∪{0} is a 0 − dpm−Cauchy sequence. If it is not,
putting in (12) x = xp(k), y = xn(k) we get:

τ + F
(

dpm
(

xp(k)+1, xn(k)+1

))
≤ F

(
A
(

xp(k), xn(k)

))
, (19)

where A
(

xp(k), xn(k)

)
= α · dpm

(
xp(k), xn(k)

)
+ β · dpm

(
xp(k), xp(k)+1

)
+γ · dpm

(
xn(k), xn(k)+1

)
+ δ · dpm

(
xp(k), xn(k)+1

)
+ L · dpm

(
xp(k)+1, xn(k)

)
. Further, accord-

ing to Proposition 1. (vi) we get limk→+∞ A
(

xp(k), xn(k)

)
= (α + 0 + 0 + δ + L)ε+ ≤

(α + δ + 2L)ε+. Since α+ β+γ+ 2δ+ L = 1, then α+ δ+ L ≤ 1, so limk→+∞ A
(

xp(k), xn(k)

)
≤ ε+. Now, taking the limit in (19) as k → +∞ we obtain τ + F(ε++)
≤ F((α + δ + 2L)ε++) ≤ F(ε++), which is a contradiction. Hence, we have proved
that {xn}n∈N∪{0} is a 0− dpm−Cauchy sequence. Since (X, dpm) is a 0− dpm-complete
partial metric space, then {xn}n∈N∪{0} converges to some point x in X. By (17) and Propo-
sition 1. (vii) it follows that x, Tx /∈ {xn}n≥n1

for some n1 ∈ N. Assume that Tx 6= x. Then
according to (13) we get

dpm(x, Tx) ≤ dpm(x, xn+1) + dpm(Txn, Tx)

< dpm(x, xn+1) + α · dpm(xn, x) + β · dpm(xn, xn+1) + γ · dpm(x, Tx)

+ δ · dpm(xn, Tx) + L · dpm(Txn, x), (20)

for n ≥ n1. Since, dpm(xn, Tx) ≤ dpm(xn, x) + dpm(x, Tx) − dpm(x, x) = dpm(xn, x) +
dpm(x, Tx)− 0 = dpm(xn, x) + dpm(x, Tx) we further have that

dpm(x, Tx) ≤ dpm(x, xn+1) + α · dpm(xn, x) + β · dpm(xn, xn+1) + γ · dpm(x, Tx)

+δ · dpm(xn, x) + δ · dpm(x, Tx) + L · dpm(xn+1, x)

→ 0 + α · 0 + β · 0 + (γ + δ) · dpm(x, Tx) + δ · 0 + L · 0 = (γ + δ) · dpm(x, Tx)

< 1 · dpm(x, Tx), (21)

which is a contradiction. Hence, x is a unique fixed point of T.

It is worth to noticing that from our Theorem 4 follow several significant results in the
context of 0-complete partial metric spaces. As a first we have the following:

Corollary 2. Let (X, dpm) be a 0− dpm−complete partial metric space and T be a self-mapping on
X. Assume that there exist F : (0,+∞)→ (−∞,+∞) a strictly increasing mapping and τ > 0
such that

τ + F(dpm(Tx, Ty)) ≤ F(dpm(x, y)), (22)

for all x, y ∈ X with dpm(Tx, Ty) > 0. Then T has a unique fixed point x in X and for every
x ∈ X the sequence {Tnx}n∈N∪{0} converges to x.

Proof. Taking α = 1, β = γ = δ = L = 0 in Theorem 4 the result follows.
Also taking in Theorem 4, δ = L = 0 (resp. α = δ = L = 0; α = β = γ = 0) we get

Reich (resp. Kannan; Chatterjea) type theorem in the context of 0− dpm−complete partial
metric spaces where F : (0,+∞)→ (−∞,+∞) is a strictly increasing mapping.

The following new result shows that the monotonicity condition of F is not necessary:

Theorem 5. Let T be a self-mapping of a 0− dpm−complete partial metric space (X, dpm). Suppose
there exists τ > 0 such that for all x, y ∈ X, dpm(Tx, Ty) > 0 yields

τ + F(dpm(Tx, Ty)) ≤ F(dpm(x, y)), (23)
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where F : (0,+∞)→ (−∞,+∞) is a mapping satisfying the conditions (F2) and (F3”).

Then T has a unique fixed point x∗ ∈ X and for every x ∈ X the sequence {Tnx}n∈N∪{0}
converges to x∗.

Proof. First, if T has a fixed point then (23) yields that it is a unique. Further, if x0 is an
arbitrary point in X and the sequence xn = Txn−1, n ∈ N is the corresponding Picard’s
sequence with xp = xp−1 for some p ∈ N then xp−1 is a unique fixed point of T. Therefore,
let xn 6= xn−1 for all n ∈ N. Hence, we assume that 0 < dpm(xn−1, Txn−1) = dpm(xn−1, xn)
for all n ∈ N. Now, by the hypothesis we get

F(dpm(xn, xn+1)) ≤ ... ≤ F(dpm(x0, x1))− nτ → −∞, (24)

as n → +∞. Hence, according to (F2) it follows that dpm(xn, xn+1) → 0 as n → +∞.
Further it is clear that F ◦ dpm(xn, xn+1) < F ◦ dpm(xn−1, xn) from which it follows xn 6= xm
if n 6= m. Now we can claim that {xn}n∈N is a 0− dpm−Cauchy. Indeed, if it is not, putting
x = xp(k), y = xn(k) in (23) we obtain

τ + F
(

dpm
(

xp(k)+1, xn(k)+1

))
≤ F

(
dpm

(
xp(k), xn(k)

))
. (25)

By (F3”), taking the limit in (25) as k → +∞, we get τ + F(ε+) ≤ F(ε+), which is
a contradiction. Therefore, {xn}n∈N is a 0− dpm−Cauchy sequence. Since, (X, dpm) is a
0− dpm−complete it yields that {xn}n∈N converges to some point x ∈ X. We shall prove
that Tx = x. If it is not true, then (because xn 6= xm if n 6= m) there exists n1 ∈ N such that
x, Tx /∈ {xn}n≥n1

. Further, for such n we have

τ + F(dpm(xn+1, Tx)) ≤ F(dpm(xn, x)). (26)

By (F3”) , taking the limit as k → +∞ in (26) we get limn→+∞ F(dpm(xn+1, Tx)) =
−∞ = F(limn→+∞ dpm(xn+1, Tx)). Now, by (F2) and Proposition 1. (i) yields that
limn→+∞ dpm(xn+1, Tx) = 0 = dpm(x, Tx). This is a contradiction. Therefore, x is a fixed
point of T. Theorem is completely proved.

Our third new result here is the extension of Theorems 2 and 3 from the ordinary
metric space to metric-like space. The proofs are very similar to the proofs for Theorems 4
and 5 and that is why we omit them.

Theorem 6. Let T be a self-mapping of a 0− dml−complete metric-like space
(

X, dml
)

. Suppose

there exists τ > 0 such that for all x, y ∈ X, dml(Tx, Ty) > 0 yields

τ + F
(

dml(Tx, Ty)
)
≤ F(A(x, y)), (27)

where F : (0,+∞) → (−∞,+∞) is a strictly increasing mapping, A(x, y) = α · dml(x, y) +
β · dml(x, Tx) + γ · dml(y, Ty) + δ · dml(x, Ty) + L · dml(y, Tx), α, β, γ, δ, L are non-negative
numbers δ < 1

2 , γ < 1, α + β + γ + 2δ + 2L = 1, 0 < α + δ + L ≤ 1. Then T has a unique fixed
point x∗ ∈ X and for every x ∈ X the sequence {Tnx}n∈N∪{0} converges to x∗.

In the following result as in Theorem 5 we show that the monotonicity condition of F
is not necessary:

Theorem 7. Let T be a self-mapping of a 0− dml−complete metric-like space
(

X, dml
)

. Assume

that there exists τ > 0, such that for all x̄, ȳ ∈ X, dml(Tx̄, Tȳ) > 0 yields

τ + F
(

dml(Tx̄, Tȳ)
)
≤ F

(
dml(x̄, ȳ)

)
, (28)
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where F : (0,+∞)→ (−∞,+∞) is a mapping satisfying the conditions (F2) and (F3”), where
(F3”): F is continuous on (0, α), with α a positive real number.
Then, the mapping T has a unique fixed point x ∈ X and for every x ∈ X the sequence
{Tnx}n∈N∪{0} converges to x.

As the immediate corollaries of Theorem 4 we obtain several new contractive condi-
tions that supplement the ones given in [19,29].

Corollary 3. Let T be a self-mapping of a 0 − dpm−complete partial metric space (X, dpm).
Suppose there exist τi > 0, i = 1, 9 such that for all x, y ∈ X, dpm(Tx, Ty) > 0 it follows

τ1 + dpm(Tx, Ty) ≤ A(x, y), (29)

τ2 + exp(dpm(Tx, Ty)) ≤ exp(A(x, y)), (30)

τ3 −
1

dpm(Tx, Ty)
≤ − 1

A(x, y)
, (31)

τ4 −
1

dpm(Tx, Ty)
+ dpm(Tx, Ty) ≤ − 1

A(x, y)
+ A(x, y), (32)

τ5 +
1

1− exp((dpm(Tx, Ty)))
≤ 1

1− exp(A(x, y))
, (33)

τ6 +
1

exp(−dpm(Tx, Ty))− exp(dpm(Tx, Ty))
≤ 1

exp(−A(x, y))− exp(A(x, y))
, (34)

τ7 + (dpm(Tx, Ty))s ≤ (A(x, y))s, s > 0, (35)

where A(x, y) = α · dpm(x, y)+ β · dpm(x, Tx)+γ · dpm(y, Ty)+ δ · dpm(x, Ty)+ L · dpm(y, Tx)
while α, β, γ, δ, L are non-negative numbers: δ < 1

2 , γ < 1, α + β + γ + 2δ + L = 1,
0 < α + δ + L ≤ 1. Then in every of these cases (29)–(35) T has a unique fixed point x ∈ X and
for x ∈ X the sequence {Tnx}n∈N∪{0} converges to x.

Proof. Take in Theorem 4, F(η) = η, F(η) = exp η, F(η) = − 1
η , F(η) = − 1

η + η, F(η) =
1

1−exp η , F(η) = 1
exp(−η)−exp η

, F(η) = ηs respectively. Because each of the mappings
η 7→ F(η) is strictly increasing on (0,+∞) the result is an immediate consequence of
Theorem 4.

Finally, we state an application of Theorem 6 for solving fractional differential equa-
tions. This is in fact a support for our theoretical result established in Theorem 6. We will
use metric like distance dml .

For f : [0,+∞)→ R a continuous function we recall the Caputo derivative of function
f order α > 0 as follows, see [30,31]

CD α( f (t)) :=
1

Γ(n− α)

t∫
0

(t− s)n−α−1 f (n)(s)ds (n− 1 < α < n, n = [α] + 1),

where [α] denotes the integer part of the positive real number α and Γ is a well known
gamma function.

Our main purpose is to give an application to Theorem 6 to prove the existence of the
solution for nonlinear fractional differential equation

CD α(x(t)) + g(t, x(t)) = 0 (0 ≤ t ≤ 1, α < 1) (36)

with the boundary conditions x(0) = 0 = x(1), where x ∈ C([0, 1],R) and C([0, 1],R) is
the set of all continuous functions from [0, 1] to R and g : [0, 1]× R→ R is a continuous
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function, see [32]. Let us give the Green’s function associated with the problem (36)
as follows

G(t, s) =

{
(t(1− s))β−1 − (t− s)β−1, if 0 ≤ s ≤ t ≤ 1
(t(1−s))β−1

Γ(β)
, if 0 ≤ t ≤ s ≤ 1.

Now we give the next main result that support our Theorem 6.

Theorem 8. Consider the nonlinear fractional differential equation (36). Let κ : R×R→ R be
a given mapping and g : [0, 1]× R→ R be a continuous function. Suppose that the following
assertions are true:

(i) there exists x0 ∈ C([0, 1],R) such that κ
(

x0(t),
t∫

0
Tx0(t)

)
≥ 0 for all t ∈ [0, 1], where

T : C([0, 1],R)→ C([0, 1],R) is defined by

Tx(t) =
1∫

0

G(t, s)g(s, x(s))ds;

(ii) there exists τ > 0 such that for all x, y ∈ X, dml(Tx, Ty) > 0 and dml(x, y) > 0 yields

|g(t, a)|+ |g(t, b)| ≤ A(x, y)e−τ ,

for all t ∈ [0, 1] and a, b ∈ R with κ(a, b) ≥ 0 where A(x, y) = α · dml(x, y) + β ·
dml(x, Tx) + γ · dml(y, Ty) + δ · dml(x, Ty) + L · dml(y, Tx), α, β, γ, δ, L are non-negative
numbers, δ < 1

2 , γ < 1, α + β + γ + 2δ + 2L = 1, 0 < α + δ + L ≤ 1.

(iii) for each t ∈ [0, 1] and x, y ∈ C([0, 1],R),κ(x(t), y(t) implies x(Tx(t), Ty(t))) ≥ 0;

(iv) for each t ∈ [0, 1], if {xn} is a sequence in C([0, 1],R) such that xn → x∗ in C([0, 1],R) and
κ(xn(t), xn+1(t)) ≥ 0 for all n ∈ N,then κ(xn(t), x(t)) ≥ 0 for all n ∈ N.

Then problem (36) has at least one solution.

Proof. Let
(

X, dml
)

endowed with the metric-like

dml(x, y) = sup
t∈[0,1]

(|x(t)|+ |y(t)|), for all x, y ∈ X).

We can prove easily that
(

X, dml
)

is a 0-complete metric-like space.
Obviously x∗ ∈ X is a solution of (36) if and only if x∗ ∈ X is a solution of the equation

x(t) =
1∫

0
G(t, s)g(s, x(s))ds for all t ∈ [0, 1]. Then problem (36) can be considered to find

an x∗ ∈ X which is a fixed point for the mapping T.
Let x, y ∈ X such thatκ(x(t), y(t)) ≥ 0 for all t ∈ [0, 1]. By (iii) we haveκ(Tx, Ty) > 0.

Then, by (i) and (ii) we get the next inequalities

|Tx(t)|+ |Ty(t)| =

∣∣∣∣∣∣
1∫

0

G(t, s)g(s, x(s))ds

∣∣∣∣∣∣+
∣∣∣∣∣∣

1∫
0

G(t, s)g(s, y(s))ds

∣∣∣∣∣∣
≤ sup

t∈[0,1]
(|g(s, x(s))|+ |g(s, y(s))|) sup

t∈[0,1]

∣∣∣∣∣∣
1∫

0

G(t, s)ds

∣∣∣∣∣∣
≤ sup

t∈[0,1]
A(x, y)e−τ .
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This means
dml(Tx, Ty) ≤ A(x, y)e−τ .

If we take F(r) = ln(r) for r > 0 and since F is strictly increasing we get

ln
(

dml(Tx, Ty)
)
≤ ln

(
A(x, y)e−τ

)
= ln(A(x, y))− τ.

Equivalently
τ + F

(
dml(Tx, Ty)

)
≤ F(A(x, y)),

where F : (0,+∞)→ (−∞,+∞) is a strictly increasing mapping, A(x, y) = α · dml(x, y) +
β · dml(x, Tx) + γ · dml(y, Ty) + δ · dml(x, Ty) + L · dml(y, Tx), α, β, γ, δ, L are non-negative
numbers, δ < 1

2 , γ < 1, α + β + γ + 2δ + 2L = 1, 0 < α + δ + L ≤ 1.
Applying Theorem 6. we deduce that T has a fixed point, which yields that the

Equation (36) has at least one solution.

3. Conclusions

It can be checked that each dm−complete metric space (X, dm) is a 0− dpm−complete
partial metric space and each 0− dpm−complete partial metric space is a 0− dml−complete
metric-like space. The opposite in both cases is not true. Namely, there exists 0 −
dml−complete metric-like space that is not 0− dpm−complete partial metric space, i.e.,
there exists 0− dpm−complete partial metric space that is not dm−complete metric space.
The main result in this manuscript is among other things, the proper generalization of
Theorem 2.1 in [21] established for dm−complete metric spaces to 0− dpm−complete partial
metric spaces, that is, to 0− dml−complete metric like spaces. For the proof of our main
result we have used only the property (F1) from Definition 5.
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