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Abstract. We present some new results for αψL−rational contractive and cyclic αψL−rational contractive
mappings defined in dl−complete metric-like spaces (also known as dislocated metric spaces). We have
showed that established results for both types of contractive mappings are in the fact equivalent. By using
this result obtained so far we discuss some examples at the end of this paper. All these examples show the
advantage of our results.

1. Introduction and preliminaries

Let X be a nonempty set and f : X → X a self-mapping of it. A solution of an equation f x = x is
called a fixed point of f . Results dealing with the existence and construction of a solution to an operator
equation f x = x form the part of so-called Fixed Point Theory. It is well known that the Banach contraction
principle [8] is one of the most important and attractive results in nonlinear analysis and in mathematical
analysis in general. Also, whole fixed point theory is a significant subject in different fields like geometry,
differential equations, informatics, physics, economics, engineering, etc. After the existence of the solutions
is guaranteed the numerical methodology will be established in order to obtain an approximated solution
to the fixed point problem.

Fixed point of functions depend heavily on the considered spaces that are defined using intuitive
axioms. These are mostly metric spaces introduced in 1906 by the French mathematician Maurice René
Fréchet [12]. In this paper we will consider some recent results from the context of so-called metric-like
spaces (or dislocated metric spaces) which represent one generalization of standard metric spaces.

Now, we recall some basic concepts, notations and known results from this concept, that is, we give the
definitions of partial metric and metric-like spaces.
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Definition 1.1. [30] Let X be a nonempty set. A mapping p : X ×X→ [0,+∞) is said to be a partial metric on X if
for all u, v,w ∈ X the following four conditions hold:

(p1) u = v if and only if p (u,u) = p (u, v) = p (v, v) ;

(p2) p (u,u) ≤ p (u, v) ;

(p3) p (u, v) = p (v,u) ;

(p4) p (u,w) ≤ p (u, v) + p (v,w) − p (v, v) .

In this case, the pair
(
X, p

)
is called a partial metric space. Obviously, each metric space is a partial metric

space. The inverse is not true. Indeed, let X = [0,+∞) and p (u, v) = max {u, v} . Then
(
X, p

)
is a partial metric

space but it is not a metric space because p (1, 1) = 1 > 0.

Definition 1.2. [17] Let X be a nonempty set. Then a mapping dl : X × X → [0,+∞) is said to be a metric-like
mapping on X if for all u, v,w ∈ X the following three conditions hold:

(dl1) dl (u, v) = 0 implies u = v;

(dl2) dl (u, v) = dl (v,u) ;

(dl3) dl (u,w) ≤ dl (u, v) + dl (v,w) .

Then the pair (X, dl) is called a metric-like space or dislocated metric space.

A metric-like mapping on X satisfies all the conditions of a metric except that dl (u,u) may be positive
for some u ∈ X. Such metric-like mappings are for instance:

1) (R, dl) , where dl (u, v) = max {|u| , |v|} for all u, v ∈ R. We see that (R, dl) is a metric-like space which is
not a metric space because for instance dl (|−2| , |−2|) = 2 > 0. Otherwise, (R, dl) is a partial metric space.

2) ([0,+∞), dl) ,where dl (u, v) = u+v for all u, v ∈ [0,+∞). It is clear that ([0,+∞), dl) is a metric-like space
where dl (u,u) > 0 for each u > 0. Since, dl (2, 2) = 2 + 2 = 4 > 3 = 2 + 1 = dl (2, 1), it follows that (p2) does not
hold. Hence, ([0,+∞), dl) is not a partial metric space.

3) (X, dl) , where X = {0, 1, 2} and dl (0, 0) = dl (1, 1) = 0, dl (2, 2) = 5
2 , dl (0, 2) = dl (2, 0) = 2, dl (1, 2) =

dl (2, 1) = 3, dl (0, 1) = dl (1, 0) = 3
2 . We have that (X, dl) is a metric-like (that is a dislocated metric) space

with dl (2, 2) > 0. This means that (X, dl) is not a standard metric space. However, (X, dl) is also not a partial
metric space because dl (2, 2) � dl (2, 0) .

4) (X, dl) , where X = C ([0, 1],R) is the set of real continuous functions on [0, 1] and dl
(

f , 1
)

=

sup
t∈[0,1]

(∣∣∣ f (t)
∣∣∣ +

∣∣∣1(t)∣∣∣) for all f , 1 ∈ C ([0, 1],R) . This is one example of metric-like space which is not a partial

metric space. Indeed, for f (t) = 2t, we obtain dl
(

f , f
)

= sup
t∈[0,1]

2 · 2t = 4 > 0. Putting 1(t) ≡ 0 for all t ∈ [0, 1],

we obtain that dl
(

f , f
)

= 4 � dl
(

f , 1
)

= dl
(

f , 0
)

= 2.
Now we shall give the definitions of convergence and Cauchyness of the sequences in metric-like space.

Definition 1.3. [17] Let {un} be a sequence in a metric-like space (X, dl) .

(i) The sequence {un} is said to be convergent to u ∈ X if limn→∞ dl (un,u) = dl (u,u) ;

(ii) The sequence {un} is said to be dl−Cauchy in (X, dl) if limn,m→∞ dl (un,um) exists and is finite;

(iii) One say that a metric-like space (X, dl) is dl− complete if for every dl−Cauchy sequence {un} in X there exists an
u ∈ X such that limn,m→∞ dl (un,um) = dl (u,u) = limn→∞ dl (un,u) .

For more details on partial metric and metric-like spaces the reader can see [14, 17, 27, 31, 35, 36, 42, 44].
Otherwise, for other classes of generalized metric spaces as well as for contractive mappings, the reader
has the following literature: [1–10, 13, 15, 18, 20–26, 28, 29, 33, 37–41].
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Remark 1.4. In metric like space (as in the partial metric space) the limit of a sequence need not be unique and a
convergent sequence need not be a dl−Cauchy sequence (see Examples in Remark 1.4 (1) and (2) in [36]). However, if
the sequence {un} is dl−Cauchy such that limn,m→∞ dl (un,um) = 0 in the dl−complete metric-like space (X, dl) , then
the limit of such sequence is unique. Indeed, in such a case if un → u as n → ∞ we get that dl (u,u) = 0 (by (iii) of
Definition 1.3). Now, if un → u, un → v and u , v, we obtain

dl (u, v) ≤ dl (u,un) + dl (un, v)→ dl (u,u) + dl (v, v) = 0 + 0 = 0. (1)

By (dl1) it follows that u = v, which is a contradiction.

Definition 1.5. [32, 36, 44] Let (X, dl) be a metric-like space. A sequence {un} is called 0 − dl−Cauchy sequence
if limn,m→∞ dl (un,um) = 0. The space (X, dl) is said to be 0 − dl−complete if every 0 − dl−Cauchy sequence in X
converges to a point u ∈ X such that dl (u,u) = 0.

It is obvious that every 0−dl−Cauchy sequence is a dl−Cauchy sequence in (X, dl) and every dl−complete
metric-like space is a 0 − dl−complete metric-like space. Also, every 0−complete partial metric space

(
X, p

)
is a 0 − dl−complete metric-like space.

In the sequel we give some results from metric-like spaces for which the proofs are immediate.

Proposition 1.6. Let (X, dl) be a metric-like space. Then we have the following:

(i) If the sequence {un} converges to u ∈ X as n → ∞ and if dl (u,u) = 0, then for all v ∈ X it follows that
dl (un, v)→ dl (u, v) ;

(ii) If dl (u, v) = 0 then dl (u,u) = dl (v, v) = 0;

(iii) If {un} is a sequence such that limn→∞ dl (un,un+1) = 0 then limn→∞ dl (un,un) = limn→∞ dl (un+1,un+1) = 0;

(iv) If u , v then dl (u, v) > 0;

(v) dl (u,u) ≤ 2
n

n∑
i=1

dl (u,ui) holds for all u,ui ∈ X, where 1 ≤ i ≤ n;

(vi) Let {un} be a sequence such that limn→∞ dl (un,un+1) = 0. If limn,m→∞ dl (un,um) , 0, then there exists ε > 0
and sequences {mk} and {nk} such that nk > mk > k, and the following sequences tend to ε when k→∞ :

dl

(
un(k),um(k)

)
, dl

(
un(k)+1,um(k)

)
, dl

(
un(k),um(k)−1

)
, dl

(
un(k)+1,um(k)−1

)
. (2)

Notice that, if the condition of (vi) is satisfied then the sequences dl

(
un(k)+q,um(k)

)
and dl

(
un(k)+q,um(k)+1

)
also converge to ε when k→∞, where q ∈N. For more details on (i)-(vi) the reader can see [14, 27, 42].

In [43] authors introduced α−admissible mapping:

Definition 1.7. Let (X, dl) be a metric-like space and let f : X → X and α : X × X → [0,+∞). f is said to be an
α−admissible mapping if

α (u, v) ≥ 1 implies α
(

f u, f v
)
≥ 1 for all u, v ∈ X.

In [19], the concept of α−continuous mapping was introduced:

Definition 1.8. Let (X, dl) be a metric-like space, α : X × X → [0,+∞) and f : X → X an α−admissible mapping.
It is said that f is α−continuous on X if

lim
n→∞

un = u implies lim
n→∞

f un = f u, for any sequence {un} from Y for which α (un,un+1) ≥ 1; n ∈N.

Also, in [14] authors introduced and proved the following:
Let Ψ denote the class of all function ψ : [0,+∞)→ [0,+∞), satisfying the following conditions:
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(i) ψ is non-decreasing and continuous such that ψ (t) < t for all t > 0;

(ii) limn→∞ ψn (t) = 0 for all t > 0.

Definition 1.9. Let (X, dl) be a metric-like space, q ∈N, B1,B2, . . . ,Bq be dl−closed subsets of X, Y = B1 ∪ . . . ∪ Bq

and α : Y × Y→ [0,+∞) be a mapping. We say that f : Y→ Y is a cyclic αψL−rational contractive mapping if:

(a) f (Bi) ⊆ Bi+1, i = 1, 2, . . . , q, where Bq+1 = B1;

(b) for any u ∈ Bi and v ∈ Bi+1, i = 1, 2, . . . , q, where Bq+1 = B1 and α
(
u, f u

)
α
(
v, f v

)
≥ 1, holds

ψ
(
dl

(
f u, f v

))
≤ ψ

(
Mdl (u, v)

)
− L ·Mdl (u, v) , (3)

where ψ ∈ Ψ, 0 < L < 1 and

Mdl (u, v) = max
{

dl (u, v) ,
dl

(
u, f u

)
dl

(
v, f v

)
dl (u, v)

,
dl

(
v, f v

) [
dl

(
u, f u

)
+ 1

]
1 + dl (u, v)

,
dl

(
u, f v

)
+ dl

(
v, f u

)
4

}
. (4)

If we take X = Bi, i = 1, 2, . . . , q, then we say that f is an αψL−rational contractive mapping.

We denote the set of all fixed points of f by Fix
(

f
)
, that is Fix

(
f
)

=
{
u ∈ X : f u = u

}
.

Remark 1.10. If f : X → X is a cyclic αψL−rational contractive mapping, u ∈ Fix
(

f
)

and α (u,u) ≥ 1, then
dl (u,u) = 0. Indeed, suppose dl (u,u) > 0. First, we get

Mdl (u,u) = max
{

dl (u,u) ,
dl (u,u) dl (u,u)

dl (u,u)
,

dl (u,u) [dl (u,u) + 1]
1 + dl (u,u)

,
dl (u,u) + dl (u,u)

4

}
= dl (u,u) . (5)

Now, from (3) we can write ψ (dl (u,u)) = ψ
(
dl

(
f u, f u

))
≤ ψ (dl (u,u)) − L · dl (u,u) < ψ (dl (u,u)) , which is a

contradiction.

There are some doubts about the structure of the function Mdl , that follows from Remark 1.10 as well
as from [14], Examples 2.3 and 2.4. Namely, in both mentioned examples we can see that u = 0 and u = 1
are fixed points. For those points we have that Mdl (0, 0) = Mdl (1, 1) = max

{
0, 0

0

}
. This means that either

Examples 2.3 and 2.4 do not support Theorem 2.1 from [14] or the structure of the function Mdl is not right
(for more informations the reader can see [11, 14–16]). Hence, in our present paper we modify the function
Mdl as follows:

Mdl (u, v) = max
{

dl (u, v) ,
1
2

dl
(
v, f u

)
,

dl (u, v) dl
(
v, f v

)
1 + dl

(
u, f u

) ,
dl

(
v, f v

) [
1 + dl

(
u, f u

)]
1 + dl (u, v)

,
dl

(
u, f v

)
+ dl

(
v, f u

)
4

}
. (6)

This new definition of the function Mdl significantly improve several results of [14]. With this new approach,
the correct formulation of Theorem 2.1 from [14] is the following:

Theorem 1.11. Let (X, dl) be a complete metric-like space, q be a positive integer, B1,B2, . . . ,Bq be nonempty dl−closed
subsets of X,Y = B1∪ . . .∪Bq and α : Y×Y→ [0,+∞) be a mapping. Assume that f : Y→ Y is a cyclic αψL−rational
contractive mapping satisfying the following conditions:

(i) f is an α−admissible mapping;

(ii) there exists u0 ∈ Y such that α
(
u0, f u0

)
≥ 1;

(iii) either f is α−continuous, or for any sequence {un} in Y with α (un,un+1) ≥ 1 for all n ≥ 0 and un → u as
n→∞, one has α

(
u, f u

)
≥ 1.

Then f has a fixed point u ∈ B1 ∩ . . . ∩ Bq. Moreover, if

(iv) for all u ∈ Fix
(

f
)

we have α (u,u) ≥ 1,

then f has a unique fixed point u ∈ B1 ∩ . . . ∩ Bq.

Remark 1.12. It is clear that Theorem 1.11 is true if we consider a metric space (X, d) or a partial metric space
(
X, p

)
instead of a metric-like space (X, dl) .
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2. Main result

In the sequel of this paper we generalize, complement, extend, unify, enrich and improve several recent
results announced in [4, 11, 14, 17, 27, 28, 32–38, 42–44]. Our first new result begins with the fixed point of
α
ψ
L−rational contractive mapping. In all our results the set Mdl (u, v) is defined by (6).

Theorem 2.1. Let (X, dl) be a dl−complete metric-like space and α : X × X → [0,∞) be a mapping. Assume that
f : X→ X is an αψL−rational contractive mapping satisfying the following conditions:

(i) f is an α−admissible mapping;

(ii) there exists u0 ∈ X such that α
(
u0, f u0

)
≥ 1;

(iii) either f is α−continuous, or for any sequence {un} in X with α (un,un+1) ≥ 1 for all n ≥ 0 and un → u as
n→∞, then α

(
u, f u

)
≥ 1.

Then f has a fixed point u ∈ X. Moreover, if

(iv) for all u ∈ Fix
(

f
)

we have α (u,u) ≥ 1,

then f has a unique fixed point u ∈ X.

Proof. First, we shall consider uniqueness of a possible fixed point. To prove that fixed point is unique, if it
exists, suppose that f has two distinct fixed points u∗, v∗ ∈ X. Then we get

ψ (dl (u∗, v∗)) = ψ
(
dl

(
f u∗, f v∗

))
≤ ψ

(
Mdl (u∗, v∗)

)
− L ·Mdl (u∗, v∗) , (7)

where

Mdl (u∗, v∗) = max
{

dl (u∗, v∗) ,
1
2

dl
(
v∗, f u∗

)
,

dl (u∗, v∗) dl
(
v∗, f v∗

)
1 + dl

(
u∗, f u∗

) ,

dl
(
v∗, f v∗

) [
1 + dl

(
u∗, f u∗

)]
1 + dl (u∗, v∗)

,
dl

(
u∗, f v∗

)
+ dl

(
v∗, f u∗

)
4

}
= max

{
dl (u∗, v∗) ,

dl (u∗, v∗)
2

, 0, 0,
dl (u∗, v∗)

2

}
= dl (u∗, v∗) .

(8)

Now from (7) follows

ψ (dl (u∗, v∗)) ≤ ψ (dl (u∗, v∗)) − L · dl (u∗, v∗) , (9)

that is dl (u∗, v∗) = 0. By (dl1) we get a contradiction.
Let us define Picard’s sequence un = f nu0, where u0 is the given point for which α

(
u0, f u0

)
≥ 1. Since,

f is an α−admissible mapping, we get that α
(
u1, f u1

)
= α

(
f u0, f

(
f u0

))
≥ 1. Again, from the same reason,

it follows that α
(
u2, f u2

)
= α

(
f u1, f

(
f u1

))
≥ 1. Continuing this process we have that α

(
un, f un

)
≥ 1 for all

n ∈ N0, and so α
(
un, f un

)
α
(
un−1, f un−1

)
≥ 1 for all n ∈ N. In the case when un−1 = un for some n ∈ N,

it is clear that un is a unique fixed point of f . Therefore, assume that un−1 , un for all n ∈ N. Hence, by
Proposition 1.6 (iv), we have dl (un−1,un) > 0 for all n ∈N.

In order to prove that the sequence {un} is a dl−Cauchy we shall first check that it is a non-increasing
one. This means that for all n ∈N we have dl (un,un+1) ≤ dl (un−1,un) . According to (3) we get

ψ (dl (un,un+1)) = ψ
(
dl

(
f un−1, f un

))
≤ ψ

(
Mdl (un−1,un)

)
− L ·Mdl (un−1,un) , (10)
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where

Mdl (un−1,un) = max
{

dl (un−1,un) ,
1
2

dl (un,un) ,
dl (un−1,un) dl (un,un+1)

1 + dl (un−1,un)
,

dl (un,un+1) [1 + dl (un−1,un)]
1 + dl (un−1,un)

,
dl (un−1,un+1) + dl (un,un)

4

}
≤ max

{
dl (un−1,un) , dl (un,un+1) ,

3
4

dl (un−1,un) +
1
4

dl (un,un+1)
}

≤ max {dl (un−1,un) , dl (un,un+1)} .

(11)

Hence, at the end we obtain

ψ (dl (un,un+1)) ≤ ψ (max {dl (un−1,un) , dl (un,un+1)}) − L ·max {dl (un−1,un) , dl (un,un+1)} . (12)

If dl (un,un+1) > dl (un−1,un) for some n ∈N, the condition (12) becomes

ψ (dl (un,un+1)) ≤ ψ (dl (un,un+1)) − L · dl (un,un+1) , (13)

which is a contradiction. Hence, dl (un,un+1) ≤ dl (un−1,un) for all n ∈N and

ψ (dl (un,un+1)) ≤ ψ (dl (un−1,un)) − L · dl (un−1,un) . (14)

Also, it follows that there exists limn→∞ dl (un,un+1) = d∗l . Suppose that d∗l > 0. Letting the limit in the relation
(14) we get d∗l ≤ 0, which is a contradiction again. Thus, limn→∞ dl (un,un+1) = 0.

Now, if limn,m→∞ dl (un,um) , 0, based on Proposition 1.6 (vi), we have sequences {mk} and {nk} such that
limk→∞ dl

(
unk ,umk

)
= ε > 0. By putting u = unk , v = umk in (3) we obtain

ψ
(
dl

(
unk+1,umk+1

))
≤ ψ

(
Mdl

(
unk ,umk

))
− L ·Mdl

(
unk ,umk

)
, (15)

where

Mdl

(
unk ,umk

)
= max

{
dl

(
unk ,umk

)
,

1
2

dl
(
umk ,unk+1

)
,

dl
(
unk ,umk

)
dl

(
umk ,umk+1

)
1 + dl

(
xnk , xnk+1

) ,

dl
(
umk ,umk+1

) [
1 + dl

(
unk ,unk+1

)]
1 + dl

(
unk ,umk

) ,
dl

(
unk ,umk+1

)
+ dl

(
umk ,unk+1

)
4

}
→ max

{
ε,
ε
2
, 0, 0,

ε
2

}
= ε as k→∞.

(16)

Letting the limit in (15) we have that ψ (ε) ≤ ψ (ε)− L · ε, which is a contradiction. Hence, the sequence {un}

is a dl−Cauchy and limn,m→∞ dl (un,um) = 0. This means that there exists a unique point u ∈ X such that

dl (u,u) = lim
n→∞

dl (un,u) = lim
n,m→∞

dl (un,um) = 0. (17)

Now, we will show that u is a fixed point of f , i.e. f u = u. This is clear in the case that the mapping f is
α−continuous. Further, suppose that for any sequence {un} in X and for all n ≥ 0, if α (un,un+1) ≥ 1 and
limn→∞ un = u, then α

(
u, f u

)
≥ 1. Let dl

(
u, f u

)
> 0. Since α

(
un, f un

)
α
(
u, f u

)
≥ 1, according to the given

contractive condition, we have

ψ
(
dl

(
f un, f u

))
≤ ψ

(
Mdl (un,u)

)
− L ·Mdl (un,u) , (18)
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where

Mdl (un,u) = max
{

dl (un,u) ,
1
2

dl (u,un+1) ,
dl (un,u) dl

(
u, f u

)
1 + dl (un,un+1)

,

dl
(
u, f u

)
[1 + dl (un,un+1)]

1 + dl (un,un+1)
,

dl
(
un, f u

)
+ dl (u,un+1)
4

}
≤ max

{
dl (un,u) ,

1
2

dl (u,un+1) ,
dl (un,u) dl

(
u, f u

)
1 + dl (un,un+1)

,

dl
(
u, f u

)
,

dl (un,u) + dl
(
u, f u

)
+ dl (u,un+1)

4

}
→ max

{
0, 0, 0, dl

(
u, f u

)
,

dl
(
u, f u

)
4

}
= dl

(
u, f u

)
as n→∞.

(19)

Now, letting the limit in (18) for n→∞, we get

ψ
(
dl

(
u, f u

))
≤ ψ

(
dl

(
u, f u

))
− L · dl

(
u, f u

)
, (20)

which is a contradiction again. This means that dl
(
u, f u

)
= 0. By (dl1) it follows f u = u, i.e. u is a unique

fixed point of the mapping f .

Remark 2.2. For the proof that limn→∞ ψ
(
dl

(
f un, f u

))
= ψ

(
dl

(
u, f u

))
we used the property of the function ψ as

well as the next claim: If limn→∞ dl (un,u) = dl (u,u) = 0 then limn→∞ dl (un, v) = dl (u, v) for each v ∈ X, where
(X, dl) is a metric-like space.

Our second new result is in the fact an improvement of Theorem 2.1 from [14], where we use the
modification of the function Mdl given by (6). Namely, we give the proof of Theorem 1.11 with the new Mdl .
We will use the following well known lemma [32, 34, 42]:

Lemma 2.3. Let (X, dl) be a metric-like space, f : X → X be a mapping and let X = A1 ∪ A2 ∪ . . . ∪ Ap be a cyclic
representation of X with respect to f . Assume that

lim
n→∞

dl (un,un+1) = 0, (21)

where un+1 = f un and u1 ∈ A1. If {un} is not a dl−Cauchy sequence then there exist an ε > 0 and two sequences {mk}

and {nk} of positive integers such that the following sequences tend to ε when k→∞ :

dl

(
umk− jk ,unk

)
, dl

(
umk− jk+1,unk

)
, dl

(
umk− jk ,unk+1

)
, dl

(
umk− jk+1,unk+1

)
, (22)

where jk ∈
{
1, 2, ..., p

}
is chosen so nk −mk + jk ≡ 1

(
mod p

)
, for each k ∈N.

Proof. of Theorem 1.11. We can suppose that u0 ∈ B1. Then the proof follows the lines of one for Theorem
2.1, except that obtained Picard’s sequence is a dl−Cauchy. Now, by the previous Lemma, putting u = umk− jk
and v = unk in (3) we get

ψ
(
dl

(
umk− jk+1,unk+1

))
≤ ψ

(
Mdl

(
umk− jk ,unk

))
− L ·Mdl

(
umk− jk ,unk

)
, (23)

where

Mdl

(
umk− jk ,unk

)
= max

dl

(
umk− jk ,unk

)
,

1
2

dl

(
unk ,umk− jk+1

)
,

dl

(
umk− jk ,unk

)
dl

(
unk ,unk+1

)
1 + dl

(
umk− jk ,umk− jk+1

) ,

dl
(
unk ,unk+1

) [
1 + dl

(
umk− jk ,umk− jk+1

)]
1 + dl

(
umk− jk ,unk

) ,
dl

(
umk− jk ,unk+1

)
+ dl

(
unk ,umk− jk+1

)
4

 .
(24)
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Taking the limit in (24) as k→∞we have

lim
k→∞

Mdl

(
umk− jk ,unk

)
= max

{
ε,
ε
2
, 0, 0,

ε
2

}
= ε. (25)

Taking the limit as k→∞, but now in (23), we obtain

ψ (ε) ≤ ψ (ε) − L · ε, (26)

which is a contradiction. This completes the proof that the sequence {un} is a dl−Cauchy. Since Y is dl-closed
in (X, dl) , this means that there exists a unique u ∈ Y such that

dl (u,u) = lim
n→∞

dl (un,u) = lim
n,m→∞

dl (un,um) = 0. (27)

Further, because f (Bi) ⊆ Bi+1, Bp+1 = B1 it follows that the sequence {un} has infinitely many terms in
each Bi for i ∈

{
1, 2, . . . , p

}
. Hence, we have the subsequences

{
uni

}
of {un} where

{
uni

}
⊆ Bi, i = 1, 2, . . . , p. It

is clear that each uni converges to u. From this it follows that B = B1 ∩ B2 ∩ . . . ∩ Bp , ∅ because it contains
at least the element u. Obviously, (B, dl) is a dl−complete metric-like space and f : B → B. It is not hard to
check that the restriction f |B of f on B satisfies all conditions of our Theorem 2.1. Hence, f has a unique
fixed point u in B. This completes the proof of Theorem 1.11.

According to the two previous Theorems we can formulate the following immediate corollary (see the
corresponding results for b-metric like spaces in [11]):

Corollary 2.4. Theorem 1.11 and Theorem 2.1 are equivalent.

Now, by Corollary 2.4 we shall discuss some examples.

Example 2.5. ([14], Example 2.3) Let X = R be equipped with the metric-like mapping dl (u, v) = max {|u| , |v|} for
all u, v ∈ X. Suppose B1 = (−∞, 0], B2 = [0,+∞) and Y = R. Define f : Y→ Y and α : Y × Y→ [0,+∞) by

f (u) =


−3u , if u < −1
−

u
5 , if − 1 ≤ u ≤ 0

−u3

4 , if 0 ≤ u ≤ 1
−6u , if u > 1

and α (u, v) =

{
u2 + v2 + 2 , if (u, v) ∈ [−1, 1]2

0 , otherwise . (28)

Also, define ψ : [0,+∞)→ [0,+∞) by ψ (t) = 1
2 t and L = 1

8 ∈ (0, 1) .
From ([14], Example 2.3) we know that this example satisfies all the conditions of Theorem 1.11 above (Theorem

2.1 from [14]). The verification is rather long. According to Corollary 2.4, that is our proof of Theorem 1.11 above, it
is sufficient to check that Theorem 2.1 holds for all u, v ∈ B1 ∩ B2 = {0} . Hence, our verification is much shorter and
nicer than the one presented in Example 2.3 of [14].

Example 2.6. ([14], Example 2.5) Let X = R+ be equipped with the metric-like mapping dl (u, v) = max {u, v} for
all u, v ∈ X. Let f : X→ X and α : X × X→ [0,+∞) be defined by

f (u) =


u3

4 , if 0 ≤ u < 1
4

u2

8 , if 1
4 ≤ u ≤ 1

u
24 , if 1 < u ≤ 3

3u3 + 2 , if u > 3

and α (u, v) =

{
6 , if (u, v) ∈ [0, 3]2

0 , otherwise . (29)

Also, define ψ : [0,+∞)→ [0,+∞) by ψ (t) = 1
2 t and L = 3

8 ∈ (0, 1) .
From [14] follows that this example support our Theorem 2.1.

Remark 2.7. In [42] Salimi et al. introduced the notions of α − ψ φ−contractive and cyclic α − ψ φ−contractive
mappings, and established the existence and uniqueness of fixed points for such mappings in dl−complete metric-
like spaces. Also, in [27] Karapinar and Salimi introduced cyclic generalized φ − ψ−contractive and generalized
φ − ψ−contractive mappings, and proved the corresponding fixed point result (Theorem 1.8). It is worth noticing
that the cyclic and usual fixed point results are equivalent in both cited paper. The proofs for this claim are the same
as in [32–34], as well as in Corollary 2.4.
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[32] S. Radenović, Classical fixed point results in 0-complete partial metric spaces via cyclic-type extension, The Allahabad Mathe-

matical Society 31 (2016) 39–55.
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[41] N. Saleem, M. Abbas, B. Bin-Mohsin, S. Radenović, Pata type best proximity point results in metric spaces, Miskolc Mathematical
Notes 21 (2020) 367–386.
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