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Metaheuristic Algorithm
Jordan Radosavljević, Nebojša Arsić, Miloš Milovanović, and Aphrodite Ktena

Abstract——The problem of optimal placement and sizing
(OPS) of renewable distributed generation (RDG) is followed
by numerous technical, economical, geographical, and ecological
constraints. In this paper, it is investigated from two view‐
points, namely the simultaneous minimization of total energy
loss of a distribution network and the maximization of profit
for RDG owner. The stochastic nature of RDG such as the wind
turbine and photovoltaic generation is accounted using suitable
probabilistic models. To solve this problem, a hybrid meta‐
heuristic algorithm is proposed, which is a combination of the
phasor particle swarm optimization and the gravitational
search algorithm. The proposed algorithm is tested on an IEEE
69-bus system for several cases in two scenarios. The results ob‐
tained by the hybrid algorithm shows that it provides high-qual‐
ity solution for all cases considered and has better performanc‐
es for solving the OPS problem compared to other metaheuris‐
tic population-based techniques.

Index Terms——Wind turbine, photovoltaic generation, optimal
placement, metaheuristic optimization.

I. INTRODUCTION

THE continuous increase in consumption, the need to re‐
duce greenhouse gas emissions, the deregulation and lib‐

eralization of electricity market, and the privileged prices of
green energy, have led to the rapid growth of renewable en‐
ergy sources in the last two decades. It seems that the wind
and solar energy are the best alternatives to fossil fuels for
power generation. The rapid growth of wind and photovolta‐
ic (PV) power installation has been enabled by the technolo‐
gy improvement on wind turbine (WT) and PV generation
systems as well as the reduction in total installation costs
[1]. Moreover, it can be argued that the WT and PV genera‐
tion systems are well established and standardized technolo‐
gies. As reported in [2], the electricity from renewable dis‐

tributed generation (RDG) units such as WT and PV will
soon be consistently cheaper than that from fossil fuels.

In principle, there are three ways to use the WT and PV
sources: ① as large wind farms and PV arrays integrated in‐
to the power system; ② as RDG units constituting essential
part of active distribution networks (DNs) and microgrids;③ as power resources in small stand-alone hybrid power sys‐
tems.

The integration of RDG units such as WT and PV leads
to major challenges due to its uncertain power generation
characteristics. Generally, the task of optimal planning of
RDG is to determine its optimal location and rated power in
order to minimize or maximize a desired objective function,
considering different technical, economic and environmental
constraints. In mathematical formulation, this is a large-
scale, nonlinear, probabilistic constrained optimization prob‐
lem with both continuous and discrete control variables. The
general framework for defining and solving this problem
must include the following aspects: ① the significance and
context of this issue; ② the modeling of RDG units, e.g., the
modeling of WT and PV output power due to uncertain char‐
acteristics of wind speed and solar irradiation; ③ the model‐
ing of load uncertainties; ④ the choice of objective func‐
tions; ⑤ the definition of technical constraints, control vari‐
ables and dependent variables; ⑥ the method for solving the
optimization problem.

So far, many studies have dealt with the problem of opti‐
mal placement and sizing (OPS) of RDG focusing on some
of the tasks above. References [3] - [6] give the comprehen‐
sive state-of-the-art reviews in this area.

References [7]-[10] use Weibull and Beta probability dis‐
tribution functions (PDFs) to model the stochastic behavior
of the wind speed and solar irradiance at a specific location.
References [11], [12] take into account different types of
loads such as linear and nonlinear loads as well as load
growth.

As noted in [5], the objectives for OPS of distributed gen‐
eration (DG) can be summarized in three groups: technical
objectives, financial objectives, and multi-objectives. Techni‐
cal objectives are the base objectives and include the energy
loss minimization [8]-[10], [13] and the improvement of volt‐
age conditions [14]-[17] in DNs. Financial objectives are re‐
lated to the minimization of investment cost, operation cost
and maintenance cost for DGs [11] as well as the maximiza‐
tion of the profit of DG owner [18]. Multi-objective func‐
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tions with various combinations of objectives have also been
implemented. One such case is the simultaneous minimiza‐
tion of annual average power loss, maximization of voltage
stability index and minimization of DN security index [7].
In [19], the multi-objective optimization consists of the mini‐
mization of power loss, the total electrical energy cost, the
pollutant emission, and the improvement of voltage stability.
References [12], [20] define a multi-objective function based
on the total active power loss and the voltage deviation. The
multi-objective optimization in [18] is considered from the
operation aspects such as improving voltage profile and pow‐
er loss reduction. Moreover, an economic analysis is per‐
formed based on the viewpoints of distribution companies
and DG owners.

Any optimal solution, which implies the OPS of a DG,
must meet different technical and economic constraints to en‐
sure standardized operation or design conditions, regardless
of the type of an objective function [5]. These constraints
can be classified into: ① the power system conservation con‐
straints which include power flow balance, bus voltage lim‐
its, branch current limits, short circuit level, power quality
limits, etc.; ② the DG limitations which include power fac‐
tor of DG units, penetration level of DG, number of DG
units, size of DG units, type of DG units, contract price lim‐
its between the DG owner and the distribution company, cap‐
italization constraints of DG owner, etc.

Different approaches for solving the problem of OPS of
DG can be classified into three main groups: analytical tech‐
niques, classical optimization methods, and metaheuristic op‐
timization algorithms. References [3]-[5], [21] present a com‐
prehensive overview of these approaches.

In recent research, some of metaheuristic population-based
methods are used. In [7], a weighted aggregation particle
swarm optimization (PSO) is proposed to find the optimal
mix of RDG units in DNs with multi-objectives such as the
minimization of power loss and the improvement of voltage
stability and network security. In [11] and [13], the PSO is
used to determine the OPS of RDG units in a DN consider‐
ing technical, economic and environmental constraints. In
[18], a multi-objective PSO (MPSO) algorithm is used to
find the OPS of RDG units, in addition to determining their
optimal prices of generated electricity in a competitive mar‐
ket. In [8], an evolutionary programming (EP) based ap‐
proach is used for solving the problem of optimal locations
of RDG such as PV and WT units in a DN. In [14] and
[15], the application of ant lion optimization algorithm
(ALOA) to solve the OPS of RDG units in DNs is pro‐
posed. In [16], the differential evolution (DE) is proposed to
evaluate the optimal RDG capacity for minimizing power
losses in sub-transmission systems. In [17] and [20], a well-
established meta-heuristic optimization method, namely ge‐
netic algorithm (GA), is used to solve the problem of opti‐
mal planning of RDG in DNs considering multiple aspects
of DN operation. In [19], a hybrid optimization algorithm
consisting of ant colony optimization (ACO) algorithm and
artificial bee colony (ABC) algorithm is proposed for solv‐
ing probabilistic OPS of RDG units in DNs.

The main contribution of this paper is the application of

an efficient hybrid metaheuristic algorithm to solve the prob‐
lem of OPS of RDG in DNs, observing the problem from
the viewpoints of the DN operator and the RDG owners.

The rest of this paper is organized as follows. Section II
presents the probabilistic models of RDG and load. The
problem of OPS of RDG is mathematically formulated in
Section III. The proposed algorithm and its application are
explained in Section IV. The simulation results are discussed
in Section V, and the conclusions are drawn in Section VI.

II. MODELING OF RDG AND LOAD

A. WT Generation Modeling

The output power of a WT for a given wind speed v is
calculated using the power characteristic of the WT, which
is a nonlinear function of wind speed [9]:

PWT (v)=

ì

í

î

ï
ïï
ï

ï
ïï
ï

0 v£ vci

v2 - v2
ci

v2
nom - v2

ci

Pnom vci < v£ vnom

Pnom vnom < v£ vco

0 v> vco

(1)

where Pnom, vnom, vci, and vco are the nominal power, nominal
wind speed, cut-in wind speed, and cut-out wind speed of
the WT, respectively. These data and the experimentally de‐
termined power curve are given by the WT manufacturers.

The stochastic nature of wind speed in a predefined time
period t at a certain location can be generally described by
Weibull PDF [7], [9]:

fv (v)=
k t

Ct ( v

Ct )
kt - 1

e
- ( )v

Ct

kt

(2)

where fv(v) is the Weibull PDF for wind speed data collected
during time period t; and Ct and kt are the scale and shape
parameters of the Weibull distribution at time period t, re‐
spectively.

The cumulative density function (CDF) for the Weibull
distribution is:

Fv (v)= 1- e
- ( )v

Ct

kt

(3)

The CDF with its inverse has been utilized to calculate
the wind speed:

v=Ct ( - ln (r))
1

kt (4)

where r is a random number uniformly distributed on [0, 1].
In practice, parameters Ct and kt can be calculated approxi‐

mately using mean value μ t
v and standard deviation σ t

v of
wind speed at time period t [7], [9]:

k t = ( σ t
v

μ t
v
)
-1.086

(5)

Ct =
μ t

v

Γ ( )1+ 1 k t (6)

where Γ(·) is the gamma function. Note that the μ t
v and σ t

v are
calculated from the wind speed measurements in time period
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t. In the problem of OPS of WTs, it is necessary to collect
the wind speed data from the site under study for a time pe‐
riod of at least one year. Based on these historical data, the
parameters of Weibull PDF can be calculated.

The yearly measured weather data is classified by seasons,
i. e., spring, summer, autumn and winter. Each season con‐
sists of a number of days corresponding to the months of the
season. The days are divided into hours, which are the ele‐
mental time segments. For a given season, a typical day is
defined consisting of 24 characteristic hours. The sampling
time for wind speed measurements is 1, 5 or 10 min during
the entire considered period [22]. This means six to sixty
readings of the wind speeds at each hour over the year.
Therefore, a characteristic hour in a typical day of a season
can be represented by the mean value and the standard devia‐
tion of wind speed calculated from measured data corre‐
sponding to this hour in all days within the season. By calcu‐
lating the mean value and the standard deviation of wind
speed for each of the 24 hours, a typical day of the consid‐
ered season is obtained.

Based on the mean value and the standard deviation of
wind speed described above, the shape parameter k and the
scale index C of Weibull PDF can be calculated for each
hour of the typical day by using (5) and (6). To realize the
Weibull PDF for each hour in discrete form, hour t is divid‐
ed into Nv states, where the corresponding wind speed and
probability for each state g are calculated by using (4) and
(2), respectively. Figure 1 shows the discrete Weibull PDF of
wind speed corresponding to an hour with μv = 9 m/s, σv = 3 m/
s, and Nv = 60. The power output of WT is dependent on the
probability of all possible states during hour t.

Accordingly, the power generation of WT considering the
probability of wind speed for each state during hour t can be
calculated as follows:

P t
WT =
∑
g = 1

Nv

PWTg fv (vt
g)

∑
g = 1

Nv

fv (vt
g)

(7)

where vt
g is the wind speed of state g at hour t; PWTg is the

power generation of WT calculated using (1) for v= vt
g; and

fv (vt
g) is the probability of the wind speed for state g during

hour t.

B. PV Generation Modeling

The power output of the PV module with given technical
characteristics is dependent on the solar irradiance and ambi‐
ent temperature [23]:

PPV (sTc)=PSTC

s
1000 [1+ γ (Tc - 25) ] (8)

where PSTC is the maximum power of PV module at standard
test condition (STC); s is the solar irradiance on the PV
module surface; γ is the temperature coefficient of PV mod‐
ule for power; and Tc is the temperature of PV cell (module).

The temperature of PV module can be calculated as a
function of solar irradiance and ambient temperature based
on the nominal operation cell temperature (NOCT) of mod‐
ules. The equation of NOCT model is [24]:

Tc = Ta +
s

800
(TNOCT - 20) (9)

where Ta is the ambient temperature; and TNOCT is the NOCT
of the module. Beta PDF is suitable to describe the stochas‐
tic nature of solar irradiance [7], [9]:
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where fs(s) is Beta PDF of s; and α and β are the shape pa‐
rameters of Beta PDF. Shape parameters of Beta PDF can be
obtained based on the mean value μs and the standard devia‐
tion σs of solar irradiance for the corresponding time period:

β = (1- μs)
é

ë

ê
ê
μs ( )1+ μs

σ 2
s

- 1
ù

û

ú
ú (11)

α=
μs β

1- μs
(12)

Based on the mean value and the standard deviation of so‐
lar irradiance determined in analogous manner for the wind
speed, the shape parameters of Beta PDF (α and β) can be
calculated for each hour of typical days using (11) and (12).
To realize Beta PDF for each hour in discrete form, hour t is
divided into Ns states, where the corresponding solar irradi‐
ance and probability for each state g are calculated using
(10). Figure 2 shows the discrete Beta PDF of solar irradi‐
ance related to an hour with μs = 436 W/m2, σs = 295 W/m2,
and Ns = 60. The power output of PV module is dependent
on the probability of all possible states for that hour t.

Accordingly, the power generation of PV module consider‐
ing the probability of solar irradiance for each state during
hour t can be calculated as:

P t
PV =
∑
g = 1

Ns

PPVg fs (st
g)

∑
g = 1

Ns

fs (st
g)

(13)

where st
g is the solar irradiance state g at hour t; PPVg is the
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Fig. 1. Discrete Weibull PDF of wind speed during an hour.
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power generation of PV module calculated using (8) for
s= st

g; and fs (st
g ) is the probability of the solar irradiance for

state g during hour t.

C. Load Modeling

It is assumed that the load profiles are the same for both
active and reactive power. The random nature in the load
change is modeled by the normal PDF. Generally, the load is
assumed to be a random variable L following the same PDF
within each hour of a given diagram of daily load.

fL (L)=
1

2π σL

e
-
( )L- μL

2

2σ 2
L (14)

fL (L)=
1
2 ( )1+ erf ( L- μL

2 σL
) (15)

L= μL + 2 σL × erf -1 (2r - 1) (16)

where μL and σL are the mean value and standard deviation
of L, respectively; r is a random number in [0, 1]; and erf(×)
and erf -1 (×) are the error function and inverse error function,
respectively.

To realize the normal PDF for each hourly load in dis‐
crete form, hour t is divide into NL states, where the corre‐
sponding load and probability for each state g are calculated
using (16) and (14), respectively. Figure 3 shows the discrete
normal PDF for the hourly load level with μL = 0.7 p.u., σL =
5%, and NL = 60.

Load level related to a time segment is determined by the
probability of all possible states for that hour. Accordingly,
considering the probability of load for each state during hour
t, the load level can be calculated as:

Lt =
∑
g = 1

NL

Lg fL (Lt
g)

∑
g = 1

NL

fL (Lt
g)

(17)

where Lt
g is the load of state g at hour t; Lg is the load level

calculated using (16); and fL (Lt
g) is the probability of the

load level for state g during hour t.

III. PROBLEM FORMULATION

The problem of OPS of RDG is considered as a con‐
strained nonlinear combinatorial optimization planning prob‐
lem with two objectives: ① minimizing the total energy loss
in DNs; ② maximizing the profit of RDG owners. Several
practical assumptions have been adopted which are neces‐
sary for the proper definition of this problem. The same or
similar assumptions used by most authors to deal with this
problem are as follows:

1) There are no geographic limitations to install various
RDG technologies within DNs [18].

2) All buses in the DN under study are subjected to the
same wind profile and solar irradiance [9], [10], [13].

3) Only one type of RDG can be connected to the same
bus in DNs [9], [10].

4) All the RDG units are modelled as negative loads with
unity power factor, i.e., producing active power only, as rec‐
ommended by the IEEE 1547 standard [9], [13], [25].

5) The maximum penetration of RGD is assumed to be
equal to the maximum load of DNs [26].

A. Objective Function

Two conflicting objectives are considered: the minimiza‐
tion of total energy loss of DNs and the maximization of
profit of RDG owners in a given planning horizon of Ny

years. The multi-objective optimization problem can be con‐
verted to a single-objective optimization problem by weight‐
ed aggregation method. Therefore, the multi-objective func‐
tion for simultaneously minimizing the total energy loss and
maximizing the profit can be formulated as:

min (F)=min (w1 F1 +w2

1
F2

) (18)

where w1 and w2 are the weight coefficients. The total ener‐
gy loss is calculated as:

F1 =
365
4 ∑y = 1

Ny∑
t = 1

96

P y
losst (19)

where P y
losst is the power loss for hour t in year y of consid‐

ered time period of Ny years.
The objective function F2 can be defined as the difference

between the incomes and costs of RDG owners:

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Solar irradiance (kW/m2)

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Pr
ob

ab
ili

ty

Fig. 2. Discrete Beta PDF of solar irradiance during an hour.
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Fig. 3. Discrete normal PDF of load during an hour.
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F2 = INRDG -Cinvestment -Copermaint (20)

where INRDG is the income of DG owners; Cinvestment is the in‐
vestment cost; and Coper,maint is the operation and maintenance
cost.

The investment cost Cinvestment contains different initial costs
such as the amount of money spent on unit construction, in‐
stallation, and essential equipment for each RDG unit. This
cost can be formulated as [18]:

Cinvestment =∑
i = 1

NRDG

PRDGiCinv (21)

where PRDGi is the rated power of RDG unit i; NRDG is the
number of RDG units; and Cinv is the investment cost of
RDG unit i.

The operation and maintenance cost Copermaint includes cost
of generation, renewing, repairing, and restoring unit equip‐
ment in case necessity. The equation for modeling the pres‐
ent worth of this cost is:

Copermaint =∑
y = 1

Ny∑
i = 1

NRDG

PRDGiCOM ( )1+ INFR
1+ INTR

y

(22)

where COM is the operation and maintenance cost of RDG
units per year; and INFR and INTR are the inflation rate and
interest rate, respectively.

The RDG owner earns a profit by selling the generated en‐
ergy to the distribution company at the contract price. The
present worth of the income of DG owners INRDG is [18]:

INRDG =
365
4 ∑y = 1

Ny∑
i = 1

NRDG∑
t = 1

96

P y
RDGit ×CPRDGi × ( )1+ INFR

1+ INTR

y

(23)

where P y
RDGit is the generated active power of RDG unit i at

hour t of year y; and CPRDGi is the contract price of electrici‐
ty selling between the RDG owner and the distribution com‐
pany.

B. Control Variables

The control variables in this optimization problem are lo‐
cations, i.e., indexes of connecting buses, and numbers of el‐
ementary RDG units which should be connected at these bus‐
es. Thus, the optimal rated power of the RDG farms can be
obtained as:

PRDGF =NRDG PRDG1 (24)

where PRDGF is the total rated power of the RDG farms; NRDG

is the number of elementary RDG units which form an RDG
farm (WT farm or PV farm); and PRDG1 is the rated power of
an elementary RDG unit.

C. Constraints

The optimization problem is subjected to various technical
constraints which are described below.
1) Power Flow Constraints

The power flow constraints in DN with RDG units operat‐
ing with unity power factor are the equality constraints repre‐
sented by the power balance equations:

Pgrid =∑
i = 1

NB

PLi -∑
i = 1

NRDGF

PRDGFi +∑
i = 1

NBr

Plossi (25)

Qgrid =∑
i = 1

NB

QLi +∑
i = 1

NBr

Qlossi (26)

where NB is the number of busses in the network; NRDGF is
the number of RDG farms; NBr is the number of branches in
the network; Pgrid is the active power injected to substation;
Qgrid is the reactive power injected to substation, PRDGFi is the
active power generation of RDG farm i; PLi is the active
power of load at bus i; QLi is the reactive power of load at
bus i; and Plossi and Qlossi are the active and reactive power
losses in branch i, respectively.

The backward/forward sweep algorithm [21] is suitable to
solve the above power balance equations for radial DNs.
2) Bus Voltage and Branch Load Constraints

The OPS of RDG should be determined in such a way
that bus voltages and branch loads remain in standard inter‐
vals in all normal operation states of DNs. These constraints
can be defined as:

V min
i £Vi £V max

i i = 12NB (27)

Sli £ S max
li i = 12NBr (28)

where V min
i and V max

i are the minimum and maximum allow‐
able values of voltage magnitude of bus i, respectively; and
S max

li is the maximum load of branch i of the network.
3) RDG Capacity Constraints

The active power capacity of each RDG farm is limited to
a specific maximum P max

RDGFi as:

PRDGFi £P max
RDGFi i = 12NRDGF (29)

According to the relation (24), the constraint of RDG ca‐
pacity can be expressed as:

NRDGi PRDGi1 £N max
RDGi PRDGi1 (30)

where NRDGi is the number of elementary RDG units which
comprises the RGD farm at location i; PRDGi1 is the rated
power of elementary RDG unit at location i; and N max

RDGi is the
maximum number of elementary RDG units at location i.

IV. SOLUTION METHOD

An improved PSOGSA [27], namely PPSOGSA is pro‐
posed to solve the optimization problem. The PPSOGSA is
the combination of phasor PSO (PPSO) [28] and gravitation‐
al search algorithm (GSA) [29]. The improvements of
PPSOGSA in relation to PSOGSA are transforming standard
PSO to a self-adaptive and parametric independent algorithm
based on modeling the particle control parameters with a
phase angle. Since the proposed algorithm belongs to meta‐
heuristic population-based optimization techniques, it will be
explained here through a general metaheuristic frame‐
work [21].

Metaheuristic optimization methods are the population-
based stochastic search techniques. In general, a search agent
can be represented as vector xi whose elements are the values
of the control variables of the optimization problem. The num‐
ber of control variables n is the search space dimension of the
optimization problem. At time (iteration) t, the agent xi(t) can
be represented as x i (t)=[x1

i ( )t xd
i (t) xn

i (t)], where xd
i (t)

is the position of the agent i with respect to the dimension
d, i. e., the values of the control variable d in the candidate
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solution i. The population POP is defined by a set of search
agents which represent potential solutions of the optimiza‐
tion problem. The number of agents N is defined as the size
of the population, i. e., POP (t)=[x1 (t) x i (t) xN (t)]T.
The essence of metaheuristic methods is the iterative correc‐
tion of the solution, i.e., generating a new population by ap‐
plying algorithmic operators with stochastic search mecha‐
nism on agents from the current population.

The general structure of the proposed algorithm can be de‐
scribed as follows.

1) Initialization.
Step 1: define the objective function F(xi) and the space

of possible solutions X.
Step 2: generate an initial population of N agents, where

the initial positions of agents are randomly selected between
minimum and maximum values of the control variables. Set
the iteration counter t = 1.

2) Iterative procedure.
Step 3: calculate the fitness value for each agent in the

current population POP(t).
Step 4: generate the new population POP(t+1) by apply‐

ing the algorithmic operators on search agents from the cur‐
rent population POP(t). For the proposed algorithm, the oper‐
ators for updating the current velocity and the current posi‐
tion of agents are as follows:

v i (t + 1)= r1v i (t)+ r2 | cos θ i (t) |
2sin θi (t)

ai (t)+

r3 || sin θ i ( )t
2cos θi ( )t

(gbest ( )t - x i (t)) (31)

x i (t + 1)= x i (t)+ v i (t + 1) (32)

where gbest (t) is the best solution (position) among all the
best positions of agents achieved so far; a i (t) is the accelera‐
tion of agents, which is updated using the equations given in
[29]; r1, r2, and r3 are the random numbers in the range of [0,
1]; and θ i (t) is the phase angle, which is updated using (33).

θ i (t + 1)= θ i (t)+ 2π | cos θ i (t)+ sin θ i (t) | (33)

Initial positions of N agents (initial population) are ran‐
domly generated in the search space of the problem with
their own phase angle θi through uniform distribution
U(02π).

Step 5: repeat the iterative procedure until the stop criteria
is met.

Step 6: report the best solution.
In this case, a potential solution can be presented by a

vector consisting of a combination of locations and rated
power of RDG farms, i. e., the number of elementary RDG
units at these locations. Thus, x i can be written as:

x i = é
ë

ù
ûBus1

1  Busd
NRDGF

P d + 1
1  P n

NRDGF
(34)

where n= 2NRDGF; Busd
NRDGF

is the position of the Nth RDGF in

the potential solution i; and P n
NRDGF

is the rated power, i.e., the

number of elementary RDG units of the RDGF at this posi‐
tion.

A general procedure of applying the proposed optimiza‐
tion algorithm to solve the problem of OPS of RDG units
(WT and PV) in DNs can be described as follows.

Step 1: define the DN configuration, the line data, the
transformer data, and the load data.

Step 2: define the technical and commercial data about the
elementary RDG units such as the rated power and other
manufacturer specifications, the installation costs, the opera‐
tion and maintenance costs, the contract power of selling
power, the interest rate, the inflation rate, and the total num‐
ber of years in the planning horizon.

Step 3: define the total number of RDG farms NRDGF to be
connected in DNs, and the maximum number of each type
of elementary RDG units which can be connected at a bus
of the network.

Step 4: define the typical daily diagrams of output power
for WT and PV, and the typical daily load profiles for each
of season, as described in Section II.

Step 5: set the algorithmic parameters such as the popula‐
tion size and the maximum number of iterations, and gener‐
ate an initial random population of N agents.

Step 6: calculate the objective function (18) for each agent
xi(t) from the current population POP(t).

Step 7: apply the PPSOGSA operators (31)-(33) to create
a new population of agents, i. e., the potential solutions of
the problem.

Step 8: repeat Step 6 and Step 7 until the stop crite‐
ria, i.e., the max number of iterations, is reached.

Step 9: report the best xi from the last iteration, i. e., the
optimal locations (list of buses) and rated power (number of
elementary RDG units at each of these buses).

The general flowchart of the proposed algorithm is pre‐
sented in Fig. 4.

V. SIMULATION RESULTS

The proposed algorithm is applied on the IEEE 69-bus
test system with the nominal voltage of 12.66 kV, and the to‐
tal active and reactive loads of 3791.89 kW and 2694.10

Edit system data and
set algorithm parameters

Generate initial population of N agents

Calculate objective function (18) to 
evaluate fitness for each agent

Update position of each search agent by
applying algorithmic operators (31)-(33) to

create new population of agents

Is the maximum
iteration reached? 

Return best solution

Set iteration counter t=1

Start

End

t=t+1
N

Y

Fig. 4. Flowchart of proposed algorithm.
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kvar, respectively. The total power loss in the original sys‐
tem without any DG shown in Fig. 5 is 224.946 kW. The
system data can be found in [30].

The task is to determine the optimal placement and sizing
for one WT farm and one PV farm in the IEEE 69-bus sys‐
tem. The rated power of elementary RDG units PRDG1 is 200
kW whereas the maximum size of RDG farms N max

RDG is 10 for
both WT and PV generation. The commercial data of the
RDG units are given in Table I. The installed cost Cinv, the
operation and management (O&M) cost COM and the contract
price of electricity selling CPDG are adopted based on the re‐
port of International Renewable Energy Agency (IRENA)
[2]. The planning horizon is Ny = 10 years.

The WT units used in this simulation have rated power of
200 kW, nominal wind speed of 10 m/s, cut-in wind speed
of 2.7 m/s, and cut-out wind speed of 25 m/s. The PV has
rated power of 200 kW and consists of 800 PV modules
with PSTC = 250 W, γ=-0.0045 ˚C-1 , and TNOCT = 46 ˚C.

The measured wind speed and solar irradiance data are
taken from [22]. The wind speed and solar irradiance data
are recorded with sampling period of 10 min and 5 min dur‐
ing the entire year of 2013, respectively. The period of one
year is divided into four seasons, i.e., spring (March, April,
May), summer (June, July, August), autumn (September, Oc‐
tober, November), and winter (December, January, Febru‐
ary), and a typical day for each season is obtained, as ex‐
plained in Section II. Based on the measured data, the mean
values and standard deviations of wind speed and solar irra‐
diance are calculated for each hour of the typical days, as
given in Tables II and III, respectively. Using these data, the
discrete PDFs of wind speed and solar irradiance for each
hour can be determined, as illustrated in Figs. 1 and 2.

By using the typical day models for seasons, the predicted
power of WT and PV is calculated for each year in the plan‐
ning horizon of 10 years. The normalized output power of
WT and PV shown in Figs. 6 and 7 is given relative to their
rated power.

A typical daily load profile is assumed for each season ac‐
cording to the IEEE RTS system [31]. Figure 8 shows sea‐
sonal variations of load levels with standard deviation of
5%. The mean hourly load levels are given relative to the
peak load.

In the system under study, two different cases (Cases 1
and 2) are considered in determining OPS of WT and PV
farms, along with an extra reference case (Case 3) for com‐
parison.

1) Case 1: consider the simultaneous minimization of total
energy loss and the maximization of profit of RDG owners,
i.e., (18).

2) Case 2: consider the minimization of total energy loss
only, i.e., (19).

3) Case 3: compare the total energy loss without RDG in‐
tegrated into system.

The optimal results are shown in Tables IV and V. The to‐
tal energy loss for considered period of 10 years calculated
for Case 3 amounts to 7251.311 MWh.

The optimal solutions in Case 1 and Case 2 indicate a
huge reduction in total energy losses in relation to Case 3.
The total energy loss is only 3.5% higher for Case 1 than
that in Case 2, but the profit of RDG owners is 20.1% high‐
er in Case 1 than that in Case 2.

1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627

5354

5152 6869

6667

55565758596061
2829303132333435

36373839

47484950

40414243444546

62636465

Fig. 5. Single-line diagram of IEEE 69-bus test system.

TABLE I
COMMERCIAL DATA OF RDG UNITS

Type

WT

PV

Cinv

($/kW)

1100

1000

COM

($/kW)

16

10

CPDG

($/kWh)

0.10

0.15

INFR
(%)

2

2

INTR
(%)

1.25

1.25

Ny (year)

10

10

TABLE II
MEAN VALUES AND STANDARD DEVIATIONS OF WIND SPEED

m/s

Time
(hour)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Spring

μv

8.188

8.269

8.678

9.053

8.927

9.056

8.616

8.248

8.684

9.259

9.110

9.043

9.111

9.099

9.202

9.123

8.732

8.519

8.468

7.849

7.806

7.544

7.984

8.391

σv

5.271

5.622

5.526

5.820

5.549

5.889

5.492

5.523

5.679

6.401

6.258

6.132

6.072

6.285

5.906

5.508

5.191

5.228

5.037

4.998

5.184

4.859

4.972

5.167

Summer

μv

7.253

7.517

7.118

7.238

7.219

7.491

7.695

7.568

8.430

8.801

9.036

9.185

9.099

8.625

8.519

8.328

8.174

7.864

7.523

7.483

7.535

7.566

7.653

7.383

σv

5.039

5.090

4.839

4.893

4.851

4.725

4.750

4.460

4.875

4.904

5.029

5.194

5.095

4.619

4.948

5.215

5.324

4.949

4.869

4.618

4.606

4.758

4.820

4.778

Autumn

μv

12.342

12.049

11.981

11.897

12.258

12.140

11.677

12.076

12.341

12.774

12.745

12.845

13.123

13.505

13.313

12.991

12.514

12.136

11.624

11.582

11.467

11.442

11.325

11.848

σv

7.009

6.929

6.871

7.035

7.361

6.948

6.836

7.288

7.086

7.203

7.342

6.633

6.607

6.789

6.922

6.742

6.423

6.498

6.072

5.789

6.138

6.771

6.709

6.916

Winter

μv

8.189

8.451

8.792

8.989

9.015

8.899

8.499

9.038

9.554

9.930

10.332

9.879

9.866

10.101

10.362

10.157

10.112

9.644

9.022

8.676

8.136

8.219

8.229

8.306

σv

6.509

5.928

5.735

5.984

6.056

5.895

5.791

6.221

5.901

6.049

5.896

6.038

5.674

5.957

6.049

5.565

5.977

6.015

5.647

5.715

5.554

5.922

6.019

6.549
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These ratios show that the solution obtained in Case 1 is
satisfactory from the viewpoints of both distribution compa‐
ny and the RDG owners. For at least one third of the year
(at night), the energy produced by the PV farm is zero, thus
the total generation (and profit) from the PV farm is consid‐
erably lower than the total generation (and profit) from the
WT farm.

The power losses in Case 2 and Case 3 are shown in Fig.
9. The results reveal that the OPS of WT and PV leads to

significant reduction of power losses in the whole period. As
shown in Fig. 10, the power loss reduction is more in peri‐
ods with higher power generation of WT and PV farms. As
expected, the power loss reduction is less in periods without
PV generation.

The convergence profiles of the PPSO [28], GSA [29] and
the proposed hybrid algorithm in solving the OPS of WT
and PV for Cases 1 and 2 are shown in Figs. 11 and 12, re‐
spectively. It is clear that the proposed hybrid algorithm
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Fig. 6. Prediction of WT generation.
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Fig. 7. Prediction of PV generation.

TABLE III
MEAN VALUES AND STANDARD DEVIATIONS OF SOLAR IRRADIANCE

W/m2

Time (hour)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Spring

μs

0.031

0.023

0.027

0.033

0.028

0.047

3.706

137.600

360.100

535.600

655.700

670.200

728.800

740.100

715.900

689.400

640.400

534.800

364.300

183.300

26.340

0.040

0.012

0.026

σs

0.109

0.076

0.099

0.116

0.083

0.161

5.895

132.400

265.800

316.700

314.400

322.100

313.500

307.200

337.400

347.300

351.600

348.900

325.200

200.800

44.010

0.109

0.042

0.071

Summer

μs

0

0.009

0.003

0.001

0.015

0.023

7.433

157.700

385.900

538.200

668.500

747.800

818.400

862.200

869.700

853.300

778.900

699.600

571.600

356.900

89.040

0.877

0.007

0.001

σs

0.001

0.039

0.021

0.006

0.051

0.080

7.809

120.400

248.500

276.600

261.400

241.900

221.200

207.100

196.500

205.400

237.300

257.800

262.700

205.700

79.090

1.344

0.036

0.013

Autumn

μs

0.017

0.006

0.019

0.032

0.038

0.021

0.036

23.790

241.900

437.700

553.100

606.900

612.300

629.700

610.300

555.900

420.900

276.800

135.200

22.000

0.045

0.010

0.025

0.007

σs

0.058

0.027

0.076

0.123

0.109

0.089

0.139

32.180

186.400

282.200

306.500

319.900

329.600

317.900

312.000

316.200

315.100

311.200

194.900

47.780

0.151

0.052

0.089

0.038

Winter

μs

0.131

0.363

0.139

0.305

0.048

0.173

0.150

2.159

97.780

254.400

363.600

435.400

419.100

398.800

332.500

287.800

145.900

33.430

1.321

0.134

0.197

0.117

0.231

0.359

σs

0.547

1.435

0.598

1.426

0.134

0.841

0.453

4.574

124.800

234.200

279.400

294.800

288.700

286.700

258.700

233.700

163.100

78.990

3.960

0.729

0.806

0.534

1.140

1.929
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achieves better solutions and converges to an optimal solu‐
tion with less number of iterations compared to the PPSO
and GSA.

In order to verify the efficiency of the proposed algorithm
in comparison with other optimization algorithms such as
ACO-ABC [19], ABC [32], GA [33], [34], PSO [35], modi‐
fied teaching-learning based optimization (MTLBO) [36],
big bang-big crunch (BB-BC) [37], and symbiotic organism
search (SOS) [38], the problem of OPS of DG is considered
for dispatchable DG units operating at the unity power factor.

The objective function is the minimization of total power
loss with nominal loads on all buses. The results presented in
Table VI shows that the optimal DG placement highly reduces
the total power losses compared to the case without DG inte‐
grated in the system. The reduction of power losses is more
pronounced with increasing DG units at different locations in
the network. This implies that the optimal allocation of multi‐
ple DG units with low rated power is more effective compared
to optimal integration of one DG with high capacity.
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Fig. 9. Power losses for Cases 2 and 3.
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Fig. 10. Power loss reduction in Case 2.
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Fig. 11. Convergence characteristics in Case 1.
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Fig. 8. Prediction of load levels.

TABLE V
OPTIMAL RESULTS OF ECONOMIC AND TECHNICAL INDICES FOR

CONSIDERED PERIOD OF 10 YEARS

Index

Total energy loss F1 (MWh)

Profit of RDG owners F2 (M$)

Profit from WT (M$)

Profit from PV (M$)

Total investment cost (M$)

Investment cost of WT (M$)

Investment cost of PV (M$)

Total O&M cost (M$)

O&M cost of WT (M$)

O&M cost of PV (M$)

Income of RDG owners (M$)

Income from WT (M$)

Income from PV (M$)

Total generation of WT (MWh)

Total generation of PV (MWh)

Case 1

2975.7

11.168

8.289

2.879

3.800

2.200

1.6

0.500

0.333

0.167

15.468

10.822

4.645

103896.5

29730.1

Case 2

2871.4

8.923

7.484

1.438

2.780

1.980

0.8

0.383

0.300

0.083

12.086

9.764

2.322

93738.8

14857.7

TABLE IV
OPTIMAL RESULTS OF WT AND PV FARMS

Case

1

2

Farm

WT

PV

WT

PV

Location bus

61

11

61

16

NRDG

10

8

9

4

PRDGF (MW)

2.0

1.6

1.8

0.8
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Figure 13 shows the effect of DG with optimal locations
and sizes on the profile of network voltage. It is evident that
the voltage deviation is significantly reduced with optimal
connection of DG units, where the voltage magnitude on
each bus is within permissible limits of 0.95-1.05 p.u..

It can be seen from Table VI that the proposed algorithm
leads to the lowest value of active power loss in all consid‐
ered cases, which confirms its excellent performances in
solving the problems of optimal DG planning. Moreover, the
comparison of minimum value Min, maximum value Max,
mean value Mean, and standard deviation Std of the results
obtained by PPSO, GSA and proposed algorithm over 20
runs is presented in Table VII. These statistical indicators as
well as the convergence profiles in Figs. 11 and 12 clearly
show that the proposed algorithm provides better and more
stable solutions than PPSO and GSA.

VI. CONCLUSION

In this paper, a hybrid algorithm is proposed and success‐
fully applied to solve the problem of OPS of RDG with ob‐
jectives to minimize the total energy loss in DNs and maxi‐
mizing the profit of RDG owners. The proposed algorithm
has been tested on the IEEE 69-bus test system considering
the probabilistic models for WT, PV and loads based on the
typical daily diagrams representing the seasons of years. The
conclusions can be summarized as follows.
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Fig. 12. Convergence characteristics in Case 2.

TABLE VI
OPTIMAL RESULTS FOR DISPATCHABLE DG UNITS

Case

No DG

1 DG

2 DG

3 DG

Method

ACO-ABC

ABC

GA

PSO

MTLBO

BB-BC

PPSO

GSA

PPSOGSA

ACO-ABC

MTLBO

GA

PPSO

GSA

PPSOGSA

ACO-ABC

MTLBO

SOS

PPSO

GSA

PPSOGSA

Optimal result

Bus

61

61

61

61

61

61

61

61

61

18
61

17
61

11
61

17
61

12
61

17
61

11
21
61

11
18
61

11
18
61

11
17
61

17
49
61

11
17
61

Size (MW)

1.8726

1.9000

1.8720

2.0264

1.8197

1.8725

1.8726

1.8743

1.8726

0.5309
1.7818

0.5197
1.7320

0.5550
1.7770

0.5312
1.7815

0.7851
1.7058

0.5312
1.7815

0.5597
0.3468
1.7159

0.4938
0.3787
1.6725

0.5267
0.3805
1.7190

0.4668
0.4086
1.7184

0.5309
0.7931
1.7812

0.5270
0.3801
1.7189

Total DG
power
(MW)

1.8726

1.9000

1.8720

2.0264

1.8197

1.8725

1.8726

1.8743

1.8726

2.3127

2.2517

2.3320

2.3127

2.4116

2.3127

2.6224

2.5447

2.6262

2.5938

3.1052

2.6260

Power loss
(kW)

224.9460

83.1890

83.3100

83.1800

84.0400

83.3230

83.2246

83.1790

83.1790

83.1790

71.6570

71.7760

71.7910

71.6460

72.1330

71.6460

69.4290

69.5390

69.4270

69.4870

70.1350

69.3980

TABLE VII
STATISTICS OF PPSO, GSA AND PPSOGSA

Case

1 DG

2 DG

3 DG

Method

PPSO

GSA

PPSOGSA

PPSO

GSA

PPSOGSA

PPSO

GSA

PPSOGSA

Min (kW)

83.1790

83.1790

83.1790

71.6460

72.1330

71.6460

69.4870

70.1460

69.3970

Max (kW)

83.1790

83.2020

83.1790

72.4840

79.7490

71.6460

74.6090

78.0880

70.1460

Mean (kW)

83.1790

83.1821

83.1790

71.8610

75.9234

71.6460

70.8308

73.9546

69.6444

Std (kW)

0

0.0071

0

0.3598

2.9599

0

1.6377

2.7664

0.3477
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Fig. 13. Voltage profiles of IEEE 69-bus test system.
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1) The proposed algorithm provides the results that are
quite satisfactory from the viewpoints of both distribution
company and RDG owners. There is a significant reduction
of total energy losses in the case of both simultaneous mini‐
mization of total energy loss and maximization of profit of
RDG owners as well as minimization of total energy loss on‐
ly.

2) The proposed algorithm provides robust and high-quali‐
ty solutions in the case of both simultaneous minimization
of total energy loss and maximization of profit of RDG own‐
ers as well as minimization of the total energy loss.

3) The proposed algorithm enables better solutions and
converges to an optimal solution with less number of itera‐
tions compared to PPSO and GSA algorithms in the case
considering RDG units with stochastic nature of power out‐
puts as well as in the case considering dispatchable DG
units.

4) The proposed algorithm leads to better results in solv‐
ing the problem of OPS of DG units than other metaheuris‐
tic population-based algorithms reported.
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