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Experimental Comparisons of Metaheuristic Algorithms in
Solving Combined Economic Emission Dispatch Problem
Using Parametric and Non-Parametric Tests
Milena Jevtić a, Nenad Jovanović b, and Jordan Radosavljević b

aTechnical Faculty in Bor, University of Belgrade, Bor, Serbia; bFaculty of Technical Sciences, University
of Priština in Kosovska Mitrovica, Kosovska Mitrovica, Serbia

ABSTRACT
In this paper, the parametric and non-parametric statistical
tests are applied for comparisons of metaheuristic algorithms’
(MAs) behavior in solving Combined Economic Emission
Dispatch (CEED) problem. In the last years, in many published
papers, a large number of MAs have been proposed to solve
CEED problem of different dimensions consisting of different
objective functions. In this paper, the statistical tests are
applied over samples of results obtained for eight objective
functions of CEED problem using the four MAs: Firefly
Algorithm, Moth Swarm Algorithm, Adaptive Wind Driven
Optimization and Particle Swarm Optimization-Gravitational
Search Algorithm. The standard IEEE 30-bus six-generator test
system is used. The statistical tests are applied over results
obtained for each function and over results obtained for all
eight functions simultaneously. The analysis of the results of
statistical tests over a single function shows that one MA
statistically behaves differently for different functions and one
MA is not the best for each function of CEED problem.
Therefore, more MAs are more acceptable than one MA for
solving a specified CEED problem. However, the analysis of the
results of statistical tests over all functions simultaneously
shows that all four MAs statistically behave in the same way.

Introduction

In the last years, a number of optimization metaheuristic algorithms (MAs)
have been proposed in literature for solving problems in the science, tech-
nology, economics, industry, operational research and other fields. For opti-
mization of non-smooth and non-convex functions, that often describe these
problems, it is difficult or impossible to use the exact gradient methods and
in these cases stochastic MAs are successfully applied. Optimization objec-
tives are different: minimizing losses and energy costs, maximizing efficiency,
profit, performance, and outputs. In most cases, the ultimate goal is to obtain

CONTACT Milena Jevtić mjevtic@tfbor.bg.ac.rs Technical Faculty in Bor, University of Belgrade, Vojske
Jugoslavije 12, Bor, Serbia
Color versions of one or more of the figures in the article can be found online at www.tandfonline.com/uaai.

APPLIED ARTIFICIAL INTELLIGENCE
https://doi.org/10.1080/08839514.2018.1508815

© 2018 Taylor & Francis

http://orcid.org/0000-0001-7699-1101
http://orcid.org/0000-0002-8872-7516
http://orcid.org/0000-0001-9722-3662
http://www.tandfonline.com/uaai
https://crossmark.crossref.org/dialog/?doi=10.1080/08839514.2018.1508815&domain=pdf&date_stamp=2018-08-18


maximal production or profit based on limited resources, the amount of
money and time (Kaveh 2014). The Combined Economic Emission Dispatch
(CEED) problem is one of the problems for whose solution in recent times
has been proposed a number of MAs. The CEED problem is a key problem
in the planning and operation of an electric power system, in which the fuel
cost or simultaneously fuel cost and emission of pollutants (SO2, CO2 and
NOx) in thermal power plants are minimized. The minimization is done by
adjusting the output powers of the generators, so that all the demands and
constraints in the system are satisfied. The objective functions are complex
and consist of sums of quadratic, sinusoidal and exponential functions. The
authors of the paper (Jevtic et al. 2017) provide an overview of over 30 MAs
proposed in various published papers for solving the CEED problem. Some
of these MAs are: genetic algorithm, artificial bee colony algorithm, particle
swarm optimization, differential evolution, gravitational search algorithm,
krill herd algorithm, Firefly Algorithm (FA), grey wolf optimizer, flower
pollination algorithm, spiral optimization algorithm, nondominated sorting
genetic algorithm and nondominated sorting genetic algorithm – ii, niched
pareto genetic algorithm, multiobjective particle swarm optimization, mod-
ified bacterial foraging algorithm, hybrid multi-objective optimization algo-
rithm based on particle swarm optimization and differential evolution,
hybrid differential evolution, elitist multiobjective evolutionary algorithm,
biogeography-based optimization algorithm, multi-objective θ-particle
swarm optimization, opposition-based gravitational search algorithm, paral-
lel particle swarm optimization algorithm, tribe-modified differential evolu-
tion algorithm, fuzzified multi-objective interactive honey-bees mating
optimization, multi-objective adaptive clonal selection algorithm, enhanced
probability-selection, hybrid Particle Swarm Optimization and Gravitational
Search Algorithm (PSOGSA), multi-objective bacterial foraging algorithm,
galaxy-based search algorithm, artificial bee colony algorithm with dynamic
population size, symbiotic organisms search optimization algorithm, quasi-
oppositional group search optimization, self-adaptive firefly algorith, multi-
objective hybrid evolutionary algorithm, multi-objective differential evolu-
tion algorithm with ensemble of selection, Moth Swarm Algorithm (MSA)
and Adaptive Wind Driven Optimization (AWDO). The authors of pub-
lished papers proposing the MAs for solving the CEED problems use various
standard power test systems, different variants of the CEED problem math-
ematical model and different dimensions of the problem (different number
of generators in the system). The authors compared the proposed MAs with
other published MAs mainly based on best, average and standard deviation
values and convergence profiles of a set of runs over a single problem which
is solved. The CEED problem is generally solved for various cases: various
numbers of generators in the system (small, medium and large number of
generators); minimization of fuel cost; minimization of emission of pollutant;
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minimization of fuel cost and emission simultaneously; with and withouth
losses in the transmission network; with and without the valve point effect in
a thermal power plant. For different cases, the objective function has a
different form, and different algorithms generally give different solutions.
This is in accordance with the “No free lunch” theorem (Sörensen 2015;
Wolpert and Macready 1997) from which follows that it is not possible to
find one optimization algorithm being better in behavior for any problem,
and it is necessary to know the problem that is solved in order to design the
algorithm with appropriate characteristics. In the published papers, the
parametric and non-parametric statistical tests were not applied in solving
the CEED problem. However, in Demšar (2006); Garcia et al. (2010, 2009),
the procedures for use of parametric and non-parametric tests are proposed
for comparing and analyzing the performance of MAs on a single data set
and on a multiple data set in solving problems in the field of computational
intelligence. In Garcia et al. (2009), a study on the use of non-parametric tests
for analyzing the evolutionary algorithms’ behavior has been done. In addi-
tion, in Garcia et al. (2009), the procedures for comparison of evolutionary
algorithms were applied on standard benchmark functions. Based on these
tests, the authors decided whether there are statistical differences between the
algorithms and whether the differences are real or random. In this paper, we
use the parametric and non-parametric statistical tests for analysis of the
results obtained by using the MAs in solving CEED problem. For this
analysis, we selected the four MAs that, based on published papers (Jevtić
et al. 2017; Radosavljević 2016; Radosavljević et al. 2015), have the best
results in solving CEED problem applying different standard test systems.
We perform comparisons of statistical behaviors of selected algorithms using
two types of analysis:

● analysis of the results obtained for each function of CEED problem
independently.

● analysis of the results obtained for all functions simultaneously.

CEED Functions to Be Minimized

Table 1 shows the eight most common functions that describe the CEED
problem and that will be minimized. The constraints are:

(1) the power equality constraint in the transmission system:

X
g2G

Pg � PD � Ploss ¼ 0; (1)

where Ploss is power loss in the system and PD is total load demand.
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(2) the generator capacity constraint:

Pmin
g � Pg � Pmax

g ; (2)

where Pmin
g and Pmax

g are minimal and maximal generator power, respectively.
The power loss of the transmission system is expressed using B-loss

matrices, as follows (Aydin et al. 2014):

Ploss ¼
X

g2G
X

j2G PgBgjPj þ
X

g2G B0gPg þ B00 ; (3)

where B00, B0g and Bgj are the coefficients of the B-loss matrices. The value of
Plimg is computed during the optimization process in order to satisfy the

power equality constraint in the system and the calculation procedure is
described in detail in the paper (Jevtić et al. 2017).

Experimentation

In this paper, we carry out a statistical analysis of four MAs that gave the best
results, compared to other MAs, in solving the CEED problem for test
systems (Jevtić et al. 2017; Radosavljević 2016). These algorithms are:
AWDO (Bayraktar and Komurcu 2015), PSOGSA (Mirjalli, Hashim, and
Sardroudi 2012), MSA (Mohamed et al. 2017) and FA (Yang 2010). We
carry out the minimization of the eight functions listed in Table 1. The power

Table 1. Description of the CEED functions to be minimized.
Description of functions f1–f8

f1 F Pg
� � ¼ P

g2G ag þ bgPg þ cgP2g
� �

;g ¼ 1; 2; . . . ; G

F(Pg) is the fuel cost function of each generator in thermal power plants ($/h); Pg is the output power
of generator g (MW); G is the total number of generators; ag, bg and cg are the cost coefficients.

f2 E Pg
� � ¼ P

g2G αg þ βgPg þ ηgP
2
g þ �g exp λgPg

� �� �

E(Pg) is the emission function of each generator in thermal power plants (t/h); αg, βg, ηg, ξg and λg are
the emission coefficients of the generation unit g.

f3 FE Pg
� � ¼ F Pg

� �þ γE Pg
� �

FE(Pg) is a combined function obtained by the sum of previous functions; γ is the scaling factor.
f4 Floss Pg

� � ¼ F Pg
� �þ λp PG � PlimG

� �2
Floss(Pg) is a function consisting of F(Pg) and quadratic penalty term, which depends on power loss in
the system (Jevtić et al. 2017); λp is the penalty factor.

f5 FEloss Pg
� � ¼ F Pg

� �þ γE Pg
� �þ λp PG � PlimG

� �2
FEloss(Pg) is a combined function which takes into account the power loss.

f6 FVPE Pg
� � ¼ F Pg

� �þP
g2G dg sin eg Pmin

g � Pg
� �� ����

���þ λp PG � PlimG
� �2

FVPE(Pg) is the fuel cost function which takes into account the power loss and valve point effect (VPE)
in the thermal power plant; dg and eg are coefficients for VPLE.

f7 Eloss Pg
� � ¼ E Pg

� �þ λp PG � PlimG
� �2

Eloss(Pg) is the emission function which takes into account the power loss.
f8 FEVPE Pg

� � ¼ F Pg
� �þP

g2G dg sin eg Pmin
g � Pg

� �� ����
���þ γE Pg

� �þ λp PG � PlimG
� �2

FEVPE(Pg) is a combined function which takes into account the power loss and VPLE
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system in which the CEED problem is solved is the standard IEEE 30-bus six-
generators system with a total load demand of 283.4 MW. The B-loss
matrices, the emission coefficients and fuel cost coefficients are taken from
Aydin et al. (2014). The algorithms are implemented in MATLAB 2011b
computational environment on a notebook at 2.2 GHz, 3.0 GB RAM. The
coefficients of the update equations for the simulations are fine-tuned and
presented in Table 2. The AWDO eliminates the need for tuning the coeffi-
cients and optimizes the selection of the coefficients at each iteration. The
results of the simulations are obtained after 30 runs. Table 3 shows the
obtained minimum and mean values, standard deviations and average error
rates for all four algorithms and all eight functions. The error rate is
calculated as a percentage value of single result in relation to the best
value. The average error rate is calculated as the mean of the error rates
for each function. The average error rate is considered as a means for
measuring the performance of each algorithm (Garcia et al. 2009). The
statistical analysis of the behavior of MAs in this paper is carried out using
the following tests:

(1) tests of normality of Kolmogorov-Smirnov, Shapiro-Wilk and
D’Agostino-Pearson applied over a results obtained for each function
independently.

(2) test of heteroscedasticity of Levene.
(3) paired t-test and Wilcoxon test applied over results obtained for each

function.
(4) tests of normality of Kolmogorov-Smirnov, Shapiro-Wilk and

D’Agostino-Pearson applied over results obtained for all functions
simultaneously.

(5) Wilcoxon’s and Friedman’s non-parametric tests for multiple-problem
analysis.

The statistical analysis in this paper is performed by using the statistical
software package SPSS.

Numerical Results

At the beginning, normality and heteroscedasticity tests are carried out to
determine whether parametric tests can be applied to the behavioral analysis
of algorithms in solving the CEED problem. Three normality tests were

Table 2. The coefficients of algorithms that apply to the test system.
AWDO MSA FA PSOGSA

N T α, g, RT, c N T Nc N T α βmin γ N T G0 α C1 C2
50 200 Optimized 50 200 6 50 200 0.25 0.2 1 50 200 1 10 2 2
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applied: Kolmogorov-Smirnov test which compares the accumulated distri-
bution of sample results obtained by algorithm, with the Gaussian distribu-
tion; Shapiro-Wilk test which computes the level of symmetry and kurtosis of
the distribution curve; D’Agostino-Pearson test which computes the skew-
ness and kurtosis in comparison with the expected Gaussian distribution.
Table 4 shows the probability values (p-values) of the normality tests over the
results obtained by algorithms. In this paper, we consider that level of
significance for p-values is α = 0.05. From Table 4, it is obvious that all of
the p-values are less than significance level α, except in case of PSOGSA use
over the functions f5–f8 where the p-value is larger than 0.05. This means
that the sample results of the AWDO, MSA and FA algorithms do not follow
a normal distribution, while the results of PSOGSA follow the normal
distribution of functions f5–f8. If the sample size would be larger, it might
be expected that PSOGSA follows the normal distribution for each function.
The histograms and Q–Q plots (graphical presentations of the quartiles from

Table 3. Best, mean, SD and average error rate values of the results, obtained by using the
AWDO, MSA, PSOGSA and FA for the test system (Case I).
Function Values AWDO MSA PSOGSA FA

f1 Best 600.111408 600.111408 600.111408 600.111408
Mean 600.159978 600.111417 600.111408 600.115307
Std.dev 0.075212 1.23379E-05 4.58952E-08 0.021351
Average error rate 8.093470E-03 1.53714E-06 1.73065E-08 0.000650

f2 Best 0.194203 0.194203 0.194203 0.194203
Mean 0.194221 0.194203 0.194203 0.194203
Std.dev 2.54834E-05 2.87182E-09 4.54627E-11 5.57591E-09
Average error rate 0.009547 1.48716E-06 4.61545E-08 5.51485E-07

f3 Best 405.043458 405.043458 405.043458 405.043458
Mean 405.066663 405.043462 405.043458 405.043458
Std.dev 0.038901 3.7282E-06 5.60405E-08 9.60373E-08
Average error rate 0.005729 9.47535E-07 2.33044E-08 1.92368E-08

f4 Best 605.998369 605.998370 605.998369 605.998369
Mean 606.023600 605.998381 618.405798 605.998401
Std.dev 0.033900 1.5047E-05 10.413550 0.000171
Average error rate 0.004163 1.87235E-06 2.047436 5.20071E-06

f5 Best 407.911455 407.911455 407.911455 407.911455
Mean 407.924636 407.911458 420.768338 407.911455
Std.dev 0.025912 2.60421E-06 9.153432 9.13352E-08
Average error rate 0.003231 7.97712E-07 3.151881 2.15069E-08

f6 Best 635.819624 635.875068 635.820110 635.869070
Mean 638.565176 644.427547 661.440545 640.975784
Std.dev 5.366131 9.453049 15.576525 7.319519
Average error rate 0.431736 1.353753 4.029510 0.810870

f7 Best 194.178511 194.178511 194.178511 194.178511
Mean 194.188534 194.178514 204.603907 194.178511
Std.dev 0.020154 2.17712E-06 6.413748 6.2201E-08
Average error rate 0.005162 1.36402E-06 5.368975 3.41853E-08

f8 Best 430.852030 430.875609 430.852090 430.854329
Mean 430.959821 431.294850 442.638341 431.226613
Std.dev 0.117999 0.363465 7.845553 0.748728
Average error rate 0.025004 0.102764 2.735568 0.086926
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data observed and those from the normal distributions) for PSOGSA and
AWDO are presented in Figure 1 and confirm the results of normality tests.
The results of Levene’s test show that the sample variances of algorithms for
each function are not homogeneities (the p-values are less than significance
level of 0.05 for each function). Thus, it is concluded that there is a difference
between the variances of the distributions of the four algorithms for each of
eight functions. Since the conditions of normality (for most functions) and
homoscedasticity (for all functions) are not verified, the parametric tests are
not appropriate for further analysis. Therefore, in this paper, the non-para-
metric tests are applied for single-function analysis. First, the Wilcoxon test
for pairwise comparisons is applied. The Wilcoxon test is the analysis of
significance of the difference between the samples of results’ mean ranks of
two algorithms. Table 5 presents the p-values obtained by non-parametric
Wilcoxon test and parametric paired t-test (which is used for comparisons of
obtained p-values). Parametric paired t-test determines whether the mean
difference between two samples of results is zero. Also, the differences of
average error rates of pairs of the algorithms are obtained and, for functions
f6–f8, are given in Table 5. It is obvious that p-values obtained by Wilcoxon
test and paired t-test are similar. However, in two cases (in function f3), the
p-values are quite different. In these two cases, the Wilcoxon non-parametric
test is taken as acceptable because the normality condition is not verified in
the results of function f3 (Table 4). The p-values obtained by Wilcoxon test
are less than significance level of 0.05 in 22 cases. It means there is a
difference between the performance of compared algorithms and algorithm
that has a smaller average error rate has a better performance. Also, if the
difference of average error rates is positive, the best performed algorithm is
second in the pair, and vice verse if the difference is negative. In two cases,
the p-values are greater than significance value, which means that there is no
difference between the algorithms’ behavior in these cases. Given the p-values
and average error rate values, the pairwise comparisons show that the

Table 4. p-values for tests of normality of Kolmogorov-Smirnov, Shapiro-Wilk and D’Agostino-
Pearson.

Kolmogorov-Smirnov Shapiro-Wilk

Algorithm f1 f2 f3 f4 f5 f6 f7 f8 f1 f2 f3 f4 f5 f6 f7 f8

PSO-GSA .200 .076 .200 .012 .200 .200 .200 .185 - - - .000 .216 .112 .252 .059
AWDO .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
MSA .000 .001 .004 .000 .001 .000 .001 .092 .000 .000 .000 .000 .001 .000 .000 .006
FA .000 .000 .000 .000 .001 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000

D’Agostino-Pearson

Algorithm f1 f2 f3 f4 f5 f6 f7 f8

PSO-GSA - .000 - .343 .636 .506 .504 .708
AWDO .000 .000 .000 .003 .000 .000 .000 .000
MSA .000 .010 - .000 .000 .100 .000 .006
FA .000 .000 - .000 .000 .001 .000 .000
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PSOGSA is the best in minimizing the functions f1 and f2, the AWDO is the
best for the functions f3, f6 and f8, the MSA is the best for the function f4
and the FA is the best for the functions f5 and f7. The true value of p for
combining pairwise comparisons of one algorithm with the rest of them
(Garcia et al. 2009; Kaveh 2014) is calculated as follows:

p ¼ 1�
Yk
i¼1

1� pið Þ; (4)

where pi is the probability value of ith pairwise comparison and k is the
number of comparisons of one algorithm. Table 6 gives the true values of p
for algorithms with better performance, for all functions. If consider that
obtained p in (4) is significance level α, from these values of α, the corre-
sponding values of the confidence intervals are calculated as 100 (1-α) and
shown in Table 6. From Tables 6 and 1 can be concluded:

Figure 1. The histograms and Q–Q plots of PSOGSA and AWDO over function f7.
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● The PSOGSA has the advantage over other algorithms in solving CEED
problem with objective functions that do not take into account VPLE
and losses in a system.

● The FA has the advantage in solving the CEED problem by taking into
account system losses.

● The AWDO outperforms other algorithms in the case where the objec-
tive functions are the most complex, i.e. when both losses and VPLE are
considered.

Multiple-Problem Analysis

For multiple-problem analysis, two or more algorithms are compared con-
sidering all functions simultaneously. For this comparison, the average values
of the 30 runs of an algorithm in each function are obtained. These average
values, in this paper, are mean values of error rates (average error rates)
(Table 3). First, the tests of normality are applied to the multiple problem for

Table 5. p-values for paired t-test and Wilcoxon test and difference of error rates in the single-
problem analysis (the functions f6–f8).
Function Algorithms pair t-test Wilcoxon test Difference of error rates

f6 PSOGSA-AWDO 0.000 0.000026 3.597774E+ 00
PSOGSA-MSA 0.000 0.000332 2.675756E+ 00
PSOGSA-FA 0.000 0.000041 3.218640E+ 00
AWDO-MSA 0.007 0.005320 −9.220173E-01
AWDO-FA 0.186 0.328571 −3.791337E-01
MSA-FA 0.110 0.059836 5.428836E-01

f7 PSOGSA-AWDO 0.000 0.000003 5.363813E+ 00
PSOGSA-MSA 0.000 0.000003 5.368974E+ 00
PSOGSA-FA 0.000 0.000003 5.368975E+ 00
AWDO-MSA 0.011 0.093676 5.160390E-03
AWDO-FA 0.011 0.035009 5.161720E-03
MSA-FA 0.000 0.000002 1.329837E-06

f8 PSOGSA-AWDO 0.000 0.000012 2.710564E+ 00
PSOGSA-MSA 0.000 0.000014 2.632804E+ 00
PSOGSA-FA 0.000 0.000010 2.648642E+ 00
AWDO-MSA 0.000 0.000010 −7.775964E-02
AWDO-FA 0.046 0.036826 −6.192187E-02
MSA-FA 0.669 0.054463 1.583777E-02

Table 6. True values of p and confidence interval for algorithms with better performance.
Function Algorithm with better performance True value of p Confidence interval, %

f1 PSOGSA 0.000263 99.97
f2 PSOGSA 0.029752 97.02
f3 AWDO 0.040704 95.93
f4 MSA 0.008761 99.12
f5 FA 0.000010 100.00
f6 AWDO 0.005346 99.46
f7 FA 0.035014 96.50
f8 AWDO 0.036847 96.31
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analysis of the conditions for the safe usage of parametric tests. Table 7 and
Figure 2 show the results of applying the normality tests. As seen in Table 7,
the normality condition is satisfied in the case of PSOGSA use but not
satisfied in the case of other three algorithms use. The histograms and Q–
Q plots (Figure 2), that are illustrated for PSOGSA and AWDO use, confirm
the results presented in Table 7.

The result of Levene’s test is p = 0.00 (the p-value is less than the
significance level of 0.05) what shows that the sample variances of algorithms
for all functions simultaneously are not homogeneities. Thus, it is concluded
that there is a difference between the variances of the distributions of the four
algorithms for all the eight functions simultaneously (for multiple problem).

Figure 2. The histograms and Q–Q plots of AWDO and PSOGSA over all functions.

Table 7. p-values for normality tests over multiple-problem analysis.
Algorithm Kolmogorov-Smirnov Shapiro-Wilk D’Agostino-Pearson

PSOGSA 0.133 0.079 0.4306
AWDO 0.000 0.000 0.000
MSA 0.000 0.000 0.000
FA 0.000 0.000 0.000

10 M. JEVTIĆ ET AL.



Since the conditions of normality and homoscedasticity are not verified, the
parametric tests are not appropriate for further analysis of this problem.
Therefore, we apply the non-parametric tests for multiple problem analysis.

Non-Parametric Tests for Multiple-Problem Analysis

The Wilcoxon and Friedman tests are non-parametric tests that are applied
in this paper for pairwise comparisons of algorithms in the multiple-problem
analysis. In our case, both tests determine whether two sets of results
obtained by means of two algorithms represent two populations with differ-
ent median values. Table 8 presents the results obtained from Wilcoxon and
Friedman tests: p-value for each pair of algorithms applied over all eight
functions simultaneously. From Table 8, it can be seen that all values of p are
p > 0.05 which means that compared algorithms behave the same, i.e.
algorithms have the same performance and differences between the set of
results obtained for each pair of algorithms are not statistically significant.

Conclusion

When solving complex optimization problems using MAs, often it is neces-
sary to apply one MA to several functions separately or simultaneously. One
such problem, for which a large number of MAs have been proposed in the
recent literature, is the CEED problem. In this paper, a statistical analysis of
the behavior of four MAs in solving eight functions describing the CEED
problem was performed. For this analysis, parametric and non-parametric
tests were applied. Two types of analysis are performed:

● analysis of the results obtained for each function independently.
● analysis of the results obtained for all functions simultaneously.

The tests of normality (Kolmogorov-Smirnov, Shapiro-Wilk and
D’Agostino-Pearson) showed that the normality condition is satisfied in the
case of PSOGSA use (for single functions and for all functions simulta-
neously) but not satisfied in the case of use of other three algorithms (FA,
MSA and AWDO). The results of Levene’s test showed that the conditions of

Table 8. p-values of Wilcoxon and Friedman tests over multiple-problem analysis.
Pairs of algorithms Wilcoxon test Friedman test

PSOGSA-AWDO 0.093 0.480
MSA-AWDO 0.674 0.157
FA-AWDO 0.674 0.157
MSA-PSOGSA 0.093 0.480
FA-PSOGSA 0.093 0.157
FA-MSA 0.889 0.157
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homoscedasticity are not verified for results of single functions and for
results of all functions too. Since the results of normality and homoscedas-
ticity have not been met, it was been concluded that parametric tests are not
appropriate for further analysis. Afterwards, the non-parametric Wilcoxon
test and parametric paired t-test were applied over results of single functions
and they showed that the results obtained using non-parametric and para-
metric tests in this case are similar. From this analysis, it follows that
PSOGSA is the best in minimizing the functions f1 and f2, AWDO is the
best for the functions f3, f6 and f8, MSA is the best for the function f4 and
FA is the best for the functions f5 and f7. It means that one MA is not the
best for each function of CEED problem. Therefore, different MAs should be
used to solve various variants of the CEED problem. The analysis of results
obtained for all functions simultaneously using the Wilcoxon’s non-para-
metric test showed that the four compared MAs behave the same and MAs
have the same performance, i.e. differences between the set of results
obtained for each pair of algorithms are not statistically significant.

The framework which is given in this work can be applied for solving
other multiple problems, with the aim of selecting the best optimization
algorithm.
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