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Abstract. The aim of the present study was to identify the relationship between 

morphological parameters and motor skills that are important for sprint performance in 

children aged 8 to 16, divided into four age groups (U10, U12, U14, U16), in both genders. 

The sample consisted of 281 participants who trained sprinting in various athletic clubs. A 

prediction set of twenty-five variables for assessing morphological characteristics and motor 

skills was applied, and the criterion variable was the 60m sprint. Using a multiple 

correlation, it has been established that a large number of morphological characteristics 

have a statistically significant positive correlation with the sprint, especially the longitudinal 

variables, while the variables of skinfolds showed a low negative statistical significance in 

relation to the given criterion. In the field of motor skills, the highest number of positive 

statistically significant correlations were found in the tests of explosive power of the upper 

and lower extremities, the agility test and horizontal and vertical jump tests. In order to 

determine which morphological features and motor skills should be applied in sprint running 

training, we tested related attributes using different algorithms for data mining (LR, M5, 

KNN, SVM, MLP, RBF). The results suggests that the predictors that we use can continue to 

be applied with high reliability in assessing sprint performance, but also in the monitoring of 

the training process in order to profile better sprint achievements. 
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INTRODUCTION 

It is well known that physical activity is an important determinant of a healthy childhood 

and adolescence and that today it is not only a predictor of health status, but certainly part of 

a system for monitoring health. There is general concern about the decrease in physical 

activity among school children, because it is known that regular physical activity provides 

the proper growth and development in the field of motor skills, cognition, positive 

anthropological status and a better body composition, improves aerobic capacity, muscle and 

bone strength, flexibility, insulin sensitivity, lipid profile, psychosocial status, reduces stress, 

anxiety, and depression (Smith et al, 2014; Kohl & Cook, 2013). Therefore, the promotion 

of quality physical education and adequate physical exercise in the period of growth and 

development is of fundamental importance, along with a good knowledge of the 

morphological and physiological aspects of growth and development. 

Considering the current situation, it is necessary to increase those types of activities that 

will contribute to the development of health-related fitness components, i.e., aerobic fitness, 

muscular fitness, flexibility, and body composition (Cvejić & Ostojić, 2017) 

Each assessment of physical characteristics and abilities in the period of growth and 

development is closely related to orchestrated physiological developmental changes in the 

body so that identification of the role of somatic growth in the development of physical 

characteristics is as important as the role and influence of physical activity on the process of 

growth and development. The difference in assessment in adults is within the boundaries of 

genetic inheritance, and in children in the period of growth and development it is a sum of 

genetic factors, the influence of the external environment, the influence of growth and 

functional development, and the degree of maturity of biological systems. 

Such research is important for assessing motor abilities in children and young people 

precisely because of the existence of these causal relationships between body dimensions 

and certain motor skills, and again related to skills specific to certain activities and certain 

sports disciplines. Understanding these relationships between morphological characteristics 

and motor skills in assessing the results achieved in more complex and demanding sports 

disciplines is invaluable because it can indicate both significant correlations as well as 

sensitive, limiting factors, and therefore can provide a comprehensive insight into physical 

abilities in the function of development and biological maturation. 

It is well established that in ontogenetic development there are “critical” and “sensitive 

periods” in which a qualitatively new level of possibilities for further development is reached 

(Viru et al., 1999). Scott (1986) describes the sensitive period as a developmental period in 

which organizational processes are sensitive to manipulation, leaving aside the importance of 

the resulting change that represents the critical period. In a pedagogical sense, the sensitive 

period is defined as the final time in which the child is most sensitive to learning certain skills. 

Accordingly, it is pointed out that optimal training at the right time during biological maturation 

can positively increase athletic development due to increased receptivity (“windows of 

opportunity”) (Ford et al., 2012). Thus, although running is considered an innate ability, during 

the period of growth and development there is improvement in this performance, and the 

determinants are conditioned by changes in body dimensions. Greater stride length, coupled 

with the greater applied force (as a result of the increase in muscle mass), is considered crucial 

in increasing the speed in sprint during the period of growth and development (Rowland, 2005). 

The development of maximum speed is not constant, but in the period of adolescence there are 

oscillations, which are related to morphological and motor characteristics, such as increasing 
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the length of the step, and reducing the frequency of the step, where these changes are not only 

the result of morphological changes, but also the result of the disruption of proprio-receptive 

mechanisms for controlling movement (Ĉoh, Babić, & Maćkala, 2010). They also observed 

that the biggest differences in the development of the maximum speed of pupils of both genders 

was between 12 and 14, with a greater variation in boys due to the development of strength. 

They reported that the sensitive period in the development of children aged 9-13 was favorable 

for the development of speed, mainly due to the development of the central nervous system 

(CNS) and the formation of a myelin sheath, which is important in transmitting nerve impulses 

from the CNS to active muscles. Sprint speed is also recognized as a key component of the 

Youth Physical Development (YPD) program that points to the neural nature of speed training 

in prepubescence and additional androgenic factors in the adolescence development phase 

(Lloyd & Oliver, 2012). The fact that many fitness components are trainable in childhood is 

particularly important in practical application as a crucial factor for the positive development of 

young athletes and motivation for participation in sports. Research in sensitive periods of 

growth and development is always a challenge and provides valuable information on markers 

that can be used in adequate training processes. In this context, the purpose of our study was to 

identify the impact of a set of morphological characteristics and motor skills (as a predictor 

parameter set), relative to the 60m sprint (as a criterion parameter set) in young people of 

different age categories in both genders. To better complete this and to reach those tests that can 

improve the results of sprint running, different data mining algorithms were used to check the 

validity of the predictor variables in relation to a given criterion variable.  

METHODS 

Sample of participants 

A sample of 281 students divided into 4 age subgroups (U10, U12, U14, U16) of both 

genders were included in this study. Students trained sprint running in various athletic clubs. 

The participants and their parents were informed both verbally and by written letter about the 

nature, methods and objectives of the research, and written permission was obtained prior to 

participation. The consent of the institutional ethics body for research and experimental work 

was also obtained. The study was conducted according to the Declaration of Helsinki. During 

the research, none of the participants reported any kind of health problems. 

Measurements 

All measurements were made in accordance with the International Biological Program 

(IBP). For the assessment of the morphological characteristics the following were monitored: 

Body height (BH in cm), Body mass (BM in kg), Leg length (LL in cm), Shoulder width-

biacromial range (SW in cm), Hip width-bitrochanterial range (HW in cm), Thigh girth (TG in 

cm), Calf girth (CG in cm), Knee diameter (KD in cm), Ankle joint diameter (AJD in cm), 

Abdomen skinfold (ASF in mm), Thigh skinfold (TSF in mm), Calf skinfold (CSF in mm). 

Body height was measured with a stadiometer (Seca Z05-PF321, Liverpool,), to the nearest 0,1 

cm and body mass was recorded using a digital scale (Seca 862, Liverpool, England) to the 

nearest 0,1 kg. The measurements of skinfold thickness were performed on the left side of the 

body with a skinfold Holtan caliper (Tanner-Whitehouse, UK). 
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The assessment of motor skills included the following variables: the Long jump (LJ in 

cm), Triple jump (TJ in cm)-TJ, Hand tapping in 15 s (HT in reps), Left foot tapping (FTL 

in reps), Right foot tapping (FTR in reps), Agility T-test (ATT in s), Vertical jump over five 

obstacles (VERT-5 in s), Sit-ups in 60 s (SU60 in reps), Hanging pull-ups (HPU in s), V-sit 

and reach (VSR in cm), Throwing a ball from a standing position (TBST in m), Throwing a 

ball from a seated position (TBSE in m), Vertical jump height (VJH in cm). In the test used 

to estimate the speed of movement and explosive strength – a vertical jump over five 

obstacles, the obstacles of height of 30 cm were set so that there was a distance of 1 meter 

between each. The test was performed by measuring the time from the moment when the 

reflection begins in front of the first obstacle, until the moment the participant hits the last 

obstacle. The goal is to measure the time needed for the participants to skip all 5 obstacles. 

Dynamic variables of vertical jumps (tests used to estimate explosive power of the lower 

extremities) were determined using a force plate (600x400, type 9286A, Kistler Instrumente 

AG, Winterthur, Switzerland). The participants performed the test by standing on a Kistler 

platform to measure the reaction force of the platform, and performed a maximum vertical 

jump from the half-squat with body preparation. The preparation of the body involved the 

lowering of the body into the half-squat, with bent knees (knee angle around 90 degrees), hands 

on hips, and from this position a maximum vertical jump was performed. The participants 

jumped as high as possible straight up into the air, and landed back on the marked cross. The 

jump in the opposite direction - the participant assumes a starting upright position, then he 

performs the opposite movement and jump. The following variables were analyzed: VS - jump 

height (cm), Pavg50ms / tt - initial acceleration per kilogram body mass (W / kg), Gft - impulse 

force calculated from flight time (Ns), MP%-deficit (elastic power index) strength shows the 

percentage of the height of the SJ jumps in relation to the height of the CMJ jumps (%).  

Criterion variable – 60 m sprint test - This test involves reaching the maximum sprint speed 

at 60 meters, wherein the recorded time ends. After the basic warm-up the participant assumes a 

starting position, one foot in front of the other, with the front leg on the starting line. On the 

command “ready-set-go”, the participant moves from the starting line, with the assistant turning 

on the stopwatch, which is stopped when the participant passes the target line with his chest. 

Statistical analysis 

The relationships between variables were analyzed using the Pearson Correlation 

Analysis (r), with the level of statistical significance set at p ≤ 0.01 and p ≤ 0.05 in SPSS for 

Windows, version 20.0 (SPSS, Inc., Chicago, IL). In order to realize the problem of research 

through mathematical algorithms, the WEKA software tool was used in this paper. Weka 

contains a variety of algorithms in support of methods for data research, of which in this 

work the following were used: Multiple linear regression - LR, Regression trees - M5, 

Method to nearest neighbors (k-Nearest Neighbors) - KNN, Support Vector Machine - 

SVM, Neural networks (Multi-Layer Perceptron) - MLP, RBF (Radial Basis Function) 

neural network - RBF. Models were tested using a 10-fold cross-validation. 

RESULTS 

Correlation coefficients (r) of the dependent variable (SPR60) and independent 

morphological characteristics and motor skills of both genders according to age are shown in 
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Table 1. A significant correlation is observed between variables of longitudinal dimensionality 

with SPR60m, in subgroup U10 equal for both genders, and in subsequent age categories there 

is a stronger correlation among the boys than the girls. Furthermore, a moderate correlation was 

observed between the variables of transversal dimensionality and I SPR60, but not in all the age 

categories. Statistically significant correlations are mainly present in U10 for both genders and 

in subgroup U14, for the boys. Relationships with skin folds are statistically significant mainly 

in the U14 and U16 samples (p ≤ 0.05), both for the girls and boys. By looking at the 

correlation analysis of the predictor motor abilities with the criterion variable, it was noted that 

in all the age categories there is a high positive correlation between SPR60 and tests for the 

estimation of explosive power of the arm and leg (long jump, triple jump, throwing the ball 

from the standing position, throwing the ball from the seated position). The strong positive 

association in all age categories is observed in the agility T-test and jump testing in relation to 

the criterion variable. In addition, there is a moderate positive correlation between the criterion 

with the tests for the speed assessment of the upper and lower extremities. 

Table 1 Correlation coefficients (r) of the dependent variable (SPR60) and independent 

morphological characteristics and motor skills for both genders and in all the age 

groups 

 
Pearson Correlation SPR60 

 
B10 G10 B12 G12 B14 G14 B16 G16 

BH (cm) -.680** -.743** -.422* -.344** -.590** -.286 -.755** -.446 

BM (kg) -.610** -.489** -.244 -.381** -.604** -.131 -.705** -.254 

LL (cm) -.631** -.739** -.359 -.265* -.491** -.131 -.679** -.518* 

SW (cm) -.473** -.431** -.049 -.246* -.650** -.156 -.429 -.536* 

HW (cm) -0.3 -.475** .068 -.221 -.604** -.061 -.031 -.392 

TG (cm) -.399* -.525** -.137 -.201 -.477** -.124 -.327 -.017 

CG (cm) -.523** -.472** -.269 -.253* -.595** -.121 -.432 -.150 

KD (cm) -0.3 -.569** -.235 -.148 -.274 -.075 -.192 -.393 

AJD (cm) -.455** -.439** -.182 -.304* -.159 -.141 -.284 -.220 

ASF (mm) 0.0 -.002 .432* .064 .235 .192 .229 .129 

TSF (mm) 0.1 .067 .378* .188 .351 .380* .627* .500* 

CSF (mm) -0.1 -.045 .262 -.080 .357 .433** .551* .237 

LJ (cm) .712** .657** .850** .666** .854** .460** .813** .861** 

TJ (cm) .700** .771** .785** .634** .846** .522** .767** .822** 

HT (reps) .551** .545** .426* .436** .580** .181 .410 .624** 

FTL (reps) .557** .413** .358 .393** .534** .265 .083 .295 

FTR (reps) .622** .402** .421* .269* .546** .498** .335 .526* 

ATT (s) -.862** -.696** -.826** -.492** -.717** -.505** -.555* -.689** 

VERT-5 (s) -.529** -.367* -.323 -.160 -.743** -.162 -.106 -.473* 

SU60 (reps) .653** .385* .621** .597** .443* .345* -.099 .181 

HPU (s) .344* .299 .517** .032 .081 .132 -.026 .375 

VSR (cm) .180 .126 .290 .185 .076 .151 .388 -.163 

TBST (m) .739** .694** .719** .651** .736** .327* .812** .706** 

TBSE (m) .789** .720** .574** .418** .779** .337* .714** .781** 

VJH (cm) .666** .572** .706** .574** .595** .365* .474 .838** 
**

 p ≤ 0.01; 
*
 p ≤ 0.05 
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Concept of Regression 

The idea of regression is to try using the input variables mapping output in the form of a 

continuous expected resulting function. The regression models use: unknown parameters (), 

independent variables (X), and dependent variables (Y). The regression model connects Y with 

X and . 

 ( )β,XfY ≈  (1) 

LR 

The multiple linear regression is a popular technique that defines a mathematical 

model that uses multiple independent variables to predict the outcome of a variable that is 

predictable (dependent variable). The multiple linear regression model in general terms 

can be defined as: 

 εββββ +++++= ippiii xxxy 22110
 (2) 

where the term i = n represents observation, yi - the dependent variable, xi - independent 

(explanatory) variable, 0 - y-intercept (const), i - coefficient of inclination for each 

explanatory variable,  - model deviations (residual).  

M5P 

M5 is an algorithm that combines a classic decision tree with a linear regression function in 

the nodes. The algorithm for the induction of the decision tree is used to form a tree, but instead 

of an entropy, for each inner node as the division criterion, minimization of variance in each of 

the subtrees is used. 

 K-Nearest Neighbors Algorithm (kNN – k-nearest neighbors)  

K-nearest neighbors algorithm is one of the simplest machine learning algorithms. It 

represents an instance-based learning algorithm. It is used for classification and 

regression. The input of the algorithm consists of the k closest training examples learned, 

and the output represents the value of the object. The value is obtained as the average 

value of the k nearest neighbors.  

SVM 

SVM (Support Vector Machine) is used to implement a SMOReg (algorithm recovery 

vector method). By using the corresponding nonlinear function, the input data is mapped 

to a multi-dimensional space in which a linear regression is formed (Shevade, Keerthi & 

Bhattacharyya, 1999). 
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MLP Regressor 

Multilayer perceptrons represent the most prominent type of artificial neural networks. 

They belong to the class of networks with feeding in advance (feedforward network), 

which do not contain any cycles. A backpropagation algorithm is implemented to build a 

neural network model. Neural networks do not approximate one function that connects the 

inputs to the output, but the output (activation) functions are used in several layers, thus 

achieving non-linearity. The BFGS (Broyden-Fletcher-Goldfarb-Shanno) algorithm is a 

method for solving unconstrained nonlinear optimization problems which trains a multilayer 

perceptron by minimizing the given loss function plus a quadratic penalty. The identity function 

is activated in the output layer. 

RBF 

The RBF (Radial Basis Function) Regressor implements RBF Networks by training in 

a supervised manner by minimizing squared error with the BFGS (Broyden–Fletcher–

Goldfarb-Shanno algorithm) method. The ridge parameter is used to penalize the size of 

the weights in the output layer, which implements a simple linear combination. 

Collection of data 

Table 2 Morphological characteristics of the participants 

Participant Age BH BM LL SW HW TC CC KD TD ASF TSF CSF SPR60 

Min 10 125.70 24.20 65.60 24.30 17.00 30.40 23.50 6.00 5.30 0.28 0.62 0.34 7.54 

Max 16 191.00 70.70 99.90 40.20 29.00 91.90 39.50 10.00 8.10 6.60 4.30 9.92 11.61 

Std. Dev. 1.79 10.83 9.91 6.25 3.08 2.54 5.97 3.17 0.63 0.46 0.79 0.66 0.98 0.81 

The figure presents the results of the measured and numerically assessed values of the 

SPR60 parameter for the M5 algorithm where it is also possible to visualize a good match 

between the estimated and measured data for the values of the SPR60 parameter (spr60 = 

0.3066 * Age=12.10 + 0.1949 * Age=10 - 0.0372 * p2 - 0.0416 * p7 + 0.0797 * p10+ 0.4686 * p11 + 11.2758). 
For more than 50% of the participants in the calculation of SPR60 the error was less 

than 3.5%, and for more than 90% of the participants, the error was less than 8%. 

The relatively small differences and small relative errors that can be perceived for a 

large number of samples indicate that the numerically calculated values give satisfactory 

matching with the measured values. This is indicated by small average values of absolute 

values of the difference (0.365), as well as relative errors (3.85%). 

Figure 1 shows the comparisons between true and estimated values in U10, U12, U14 

and U16 for both genders. The y axis represents the true and estimated values for the 

followed criteria and the x axis represents the participants. The white boxes represent the 

M5 algorithm prediction and the black squares represent the true value. 
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Fig. 1 Model estimation for the 60 m sprint for boys and girls U10, U12, U14, U16 

Performance evaluation 

The performance of the predictor is calculated by comparing the estimated value with 

the actual value. There are various methods for evaluation such as: CC - Correlation 

coefficient, Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and Relative 

Absolute Error (RAE). 

Table 3 The results of regression algorithms for morphological characteristics 

Аlgorithm CC МАЕ  RMSE RAE (%) 

LR 0.786 0.399 0.504 61.95 

M5 0.789 0.392 0.501 60.80 

KNN 0.741 0.428 0.547 66.44 

SVM 0.783 0.400 0.508 62.09 

MLP 0.739 0.440 0.561 68.27 

RBF 0.789 0.400 0.499 62.20 

Legend: MAE - Mean absolute error, CC - Correlation coefficient, RMSE - Root mean square error,  

RAE-Relative absolute errors, LR- Multiple linear regression, M5 - Regression trees, KNN - Method of  

k nearest neighbors, SVM - Support vector method, MLP - Neural networks, RBF - Neural network 

K nearest neighbors algorithm gives the optimal result for the 7 nearest neighbor-cases 

(k = 7).  
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A good result is attributes that have a high correlation with the output variable, and are 

not correlated with each other. High attribute correlation values with the output parameter 

(in all algorithm s> 0.7) indicate that they can be used to numerically evaluate the value of 

the SPR60 parameter. The RMSE values for the tested algorithms are shown in the table. 

The test results show that all the models are usable (RMSE <0.55) and give approximately 

the same results. 

Table 4 Results of the regression algorithms for motor skills 

Аlgorithm CC МАЕ RMSE RAE (%) 

LR 0.894 0.290 0.365 45.09 

M5 0.894 0.288 0.365 44.65 

KNN 0.841 0.339 0.439 52.59 

SVM 0.894 0.285 0.364 44.32 

MLP 0.853 0.339 0.430 52.67 

RBF 0.893 0.289 0.365 44.88 

Legend: MAE - Mean absolute error, CC - Correlation coefficient, RMSE - Root mean square error,  

RAE -Relative absolute errors, LR - Multiple linear regression, M5- Regression trees, KNN - Method of  

k nearest neighbors, SVM - Support vector method, MLP - Neural networks, RBF - Neural network 

The K nearest neighbors algorithm gives the optimum result for 4-nearest neighbors of 

the case (k=4). Looking at the absolute error (MAE), the best result is provided by the 

support vector algorithm. With the support vector, the mean absolute error is 0.285, which 

can be interpreted as a deviation from the real SPR60 value. However, other algorithms give 

a result in the form of a similar error value. Multiple linear regression algorithms, regression 

trees, and RBF neural networks give an error of less than 0.3, while algorithms to nearest 

neighbors and artificial neural networks have an error of less than 0.34. 

A good result is attributes that have a high correlation with the output variable, and are not 

correlated with each other. The high values of the attribute correlation with the output 

parameter (in all algorithms > 0.84) indicate that they can be used for the numerical estimation 

of the verification of the SPR60 parameter. The best results are given by multiple linear 

regression algorithms, regression trees, support vector algorithms, and RBF neural networks. 

The test results show that all models are usable because the RMSE values are 

relatively small (RMSE≤0.365). 

Table 5 Results of the regression algorithms for morphological characteristics and motor 

skills (total) 

Аlgorithm CC МАЕ RMSE RAE (%) 

LR 0.888 0.293 0.377 45.46 

M5 0.886 0.293 0.378 45.49 

KNN 0.836 0.357 0.446 55.38 

SVM 0.899 0.292 0.371 45.41 

MLP 0.869 0.319 0.411 49.65 

RBF 0.891 0.287 0.369 44.59 

Legend: MAE - Mean absolute error, CC - Correlation coefficient, RMSE - Root mean square error,  

RAE -Relative absolute errors, LR - Multiple linear regression, M5- Regression trees, KNN - Method of 

k nearest neighbors, SVM - Support vector method, MLP - Neural networks, RBF- Neural network 
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The K nearest neighbors algorithm gives the optimal result for the 6 nearest sample 

neighbors (k=4). 

To predict the Sprint attribute at 60 meters, the results are shown in the following 

table. Looking at the mean absolute error, the best result is provided by the RBF neural 

network algorithm. MAE for the RBF neural network algorithm is 0.287, but very similar 

results are obtained for other observed algorithms. The root mean square error RMSE 

cannot easily be interpreted as an absolute error, but is still significant. The RBF neural 

network algorithm gives a slightly better result than the other studied algorithms. The root 

mean square error in the RBF neural network algorithm is 0.369 and for the multiple 

linear regression algorithm is 0.377. 

DISCUSSION 

In order to understand the possible mechanisms underlying the sprint performance, we 

have explored the training process of boys and girls classified into 4 age subgroups (U10, 

U12, U14 and U16) and investigated the existence of certain morphological characteristics and 

motor skills that are important for better sprinting performance. By obtaining insight into the 

correlation analysis, we can categorize the results into the influence of morphological 

characteristics and the influence of different groups of motor tests: tests of explosive power of 

the upper extremities and lower extremities, agility tests, tests for the assessment of repetitive 

strength, and jump testing, both horizontal and vertical. What is specific to the population of the 

participants is the fact that different age groups of both genders from pre-puberty to 

adolescence are followed. 

Initially, in the morphological characteristics, a significant correlation is observed in body 

height, mass and length of the leg compared to the criterion variable SPR60 in the age group 

U10 and U14. Taking these variables in relation to gender, a significant correlation in both 

genders is evident in the age group U10, with a smaller number of significant correlations in the 

age group U12, in favor of the girls, whereas in the age U14 and U16 a larger number of 

significant correlation is present among the boys. Significant correlates are accompanied by 

rapid growth and development, as in this period a small difference in biological maturation may 

imply an apparent difference in body height and mass, which subsequently affects a huge 

difference in sprint performance (Gil, Ruiz, Irazusta, Gil, & Irazusta, 2007). 

Body height is related to the length of the legs, which together cause a greater stride 

length that with frequency represents the most important factor in determining sprint 

performance (Papaiakovou et al., 2009). Adding body mass as a factor of acceleration and 

strength, it is clear that these factors are important determinants of speed in the sprint, and 

this is in agreement with other studies (Wong, Chamari, Dellal, & Wisløff, 2009; Mujika, 

Spencer, Santisteban, Goiriena, & Bishop, 2009; Malina et al., 2005). The skinfolds did not 

prove to be a significant sprint performance factor, except for the U14 group in the case of 

the girls and U16 groups, for both boys and girls, as a negative predictor representing a 

ballast mass and decreasing relative strength (Babić, 2005).  

Observing the correlation coefficient of motor skills compared to SPR60, the largest 

number of positive statistically significant values was recorded in the age group U10 equally 

for both boys and girls, in the U12 group slightly more among the girls, while in the U14 the 

boys had the advantage, and the smallest number of significant correlations was present in 
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U16. Significant correlation associated with the sprint was observed in the tests of explosive 

power of the upper and lower extremities (HT, TBST, TBSE, FTL, FTR), agility T-test, and 

jumps as tests of explosive strength (LJ, TJ, VERT-5, VJH), while tests for repetitive strength 

and flexibility (HPU and VSR) as basic motor tests did not prove significant in correlation with 

our criterion - SPR60. Tests of the explosive power of the lower and upper extremities indicate 

a well-known interweaving effect of their combined strength, because the arms generate the 

rhythm of the legs and maintain the balance and stability of the body, which contributes to the 

speed of movement. When observing agility, it is known that it represents a complex 

manifestation of motor abilities that is narrowly determined by the biomechanical background 

and morphological characteristics, but often the technical nature of its outcome is emphasized. 

It is believed that the agility capacity is defined as early as age 14 by the development of the 

nervous and muscular system, the development of coordination, and by the influence of sex 

hormones. However, often by training strength, speed, coordination and flexibility, agility 

can be further developed. A body of literature indicates that there are contradictory results 

on the relationship between agility and sprinting. Recently, Bidaurrazaga-Letona et al. 

(2015) in a population of young players aged 10-14 over a studied period of ten months 

analyzed the relationship of maturation, age, body size, the vertical jump and sprint, and 

concluded that the agility test is a reliable and objective instrument in assessing adolescent 

athletes. In the research of Negra et al. (2017), a high statistically significant association 

between agility and sprint was obtained at 10m and 20m in a group of young soccer players 

aged 12, and Mathisen & Pettersen (2015) also reported a significant correlation between 

agility and sprint at 20m among young soccer players aged 13-14. However, there are 

constraints in the results, as the research is not often uniform, nor are the tests, which frequently 

mislead researchers and point to the complexity and specificity of agility. For example, the 

results that frequent changes in direction affect the reduction of velocity (Gambetta, 1990) or 

that speed has limited benefit in improving the agility of rugby players (Corvo, 1997), and that 

the agility training is superior to speed improvement, but that speed training does not improve 

significantly the 50m sprint (Hilsendager, Strow, & Ackerman, 1969). Young, Hawken, & 

MCdonald, (1996), as well as Buttifant, Graham, & Cross, (1999), did not find significant 

correlations between the sprint and the agility test in Australian soccer players. Little & 

Williams (2005), exploring this problem in the population of professional players, conclude 

that acceleration, maximum speed and agility are relatively independent attributes. This is 

confirmed by the study of Young, McDowell, & Scarlett (2001), who examined the specificity 

of the response to sprint and agility training over 6 weeks, with straight sprint training at 20-

40m significantly improved the sprint performance at 30m, but the improvement in 

performance decreased as the agility requirements in number and intensity of directional 

changes increased. Agility training has resulted in significant enhancements in the change-of-

direction test, but there has been no significant improvement in sprint performance. These 

authors point out the specificity of the training and indicate that training in speed and agility 

produces different specific performance gains, which differ physiologically and 

biomechanically. Our results, however, indicate that agility is a key predictor of optimum 

performance, and that the T-test, as an agility assessment, can objectively be implemented in 

the assessment of sprint achievements. They could, therefore, be read in both directions, in both 

genders, in the sense that the T-test of agility in both boys and girls positively statistically 

influenced the improvement of the dependent variable SPR60, and vice versa, that running 

training influenced the better performance on this agility test. 
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Correlation in the tests of explosive leg strength and power in vertical and horizontal 

reflections (LJ, TJ, Vert-5, VJH) compared to the criterion variable showed a high positive 

statistical significance and confirmed the essential importance of these predictors on the 

performance of the sprint. Our results are consistent with the research of other authors, so 

Comfort, Stewart, Bloom, & Clarkson (2014) in a young soccer population showed a strong 

correlation between SJ (squat jumps) height and CMJ (countermovement jumps) height with 

5 m and 20 m sprint times. Marián, Katarína, Dávid, Matúš, & Simon (2016) reported that 8 

weeks of jump squat training of male students led to significant improvements in 50 m sprint 

time, while Williams, Oliver & Faulkner (2011), assessing the progress of young soccer 

players aged 12-16, found that there are changes in performance (10 m, 30 m and vertical 

jump) on an annual basis (10 m sprint time was improved at a rate of 3.1% per year, 30 m 

sprint time by a rate of 2.7% per year, and jump height by a rate of 6.9% per year) pointing 

to the association between greater maturity and physical development and athletic 

performance. A vertical jump over five obstacles (VS5P) belongs to the complex 

coordinated athletic disciplines where the speed of movement and explosive power are the 

main determinants. The fact that this parameter is in a high positive statistically significant 

correlation relative to the dependent variable among the boys in U14 but also the girls in 

u16 clearly indicates that this moment of biological maturation has contributed to being able 

to deal with much more complex tasks that require higher intensity, and neuromuscular 

coordination requirements, than before. 

A major advantage of using neural networks as well as other algorithms for data mining 

is the ability to solve complex problems where there is a connection between input and 

output, which sometimes due to the complexity of the relationship cannot be solved by 

standard statistical methods. These algorithms and neural networks are then used to identify 

the real nature of these relationships, but mainly to solve modeling and prediction problems 

(Haykin, 1994; Maszczyk, Roczniok, Waśkiewicz, Czuba, & Mikołajec, 2012). Considering 

that most relationships in sports science are not linear and that any change in variable on one 

axis will consequently affect the variable in the second axis, researchers are turning to neural 

models and algorithms as a new potential for predicting results (Maszczyk, et al., 2014). In 

the present study, using different types of algorithms, we tested whether we made a good 

choice of predictor variables for evaluating a criterion variable, and we obtained high 

correlation values of the attribute with the output dependent variable in all algorithms, where 

the coefficient of correlation is CC > 0.7 (Table 3.), indicating that they can further be used 

with high reliability for assessing the given criterion variable SPR60. Using the morphological 

characteristics in mathematical regression algorithms to estimate the SPR60 parameter, the 

high validity of these proposed predictor variables for the criterion variable estimation 

(MAE <0.44; RMSE <0.561) was confirmed (Table 3). In determining the percentage of the 

relative error with respect to SPR60m, the resulting error is less than 3.5%, which means that 

the estimated variables can be used in further research with a precision of approximately 

96% (Fig. 14). The analysis of motor skills using regression algorithms also confirmed the 

high validity of the proposed predictor variables for estimating the criterion variable 

(whereby for all mathematical algorithms used in this paper, MAE <0.339 and RMSE 

<0.439) (Table 4), indicating that the used motor skills are highly valid attributes for 

evaluating SPR60. Taking together both morphological characteristics and motor skills to 

evaluate the dependent variable using different algorithms, even better results are obtained 

(MAE <0.357; RMSE <0.446) (Table 5), further indicating the high validity of any proposed 
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predictor variables for the evaluation of the criterion SPR60. Based on all the above 

indicators, it can be concluded that the proposed mathematical regression algorithms can 

successfully be used to numerically estimate the values of the SPR60 parameter either by 

using only morphological parameters or only motor abilities, or both together. 

 Similar results were obtained by the test sample method, where two thirds of the sample 

were used for learning algorithms, and one third for validation of the results, so this type of 

validation test showed that all the proposed algorithms can be used for a numerical estimation 

of SPR60m values (CC> 0.8) (Table 4). By analyzing the 10-fold cross-validation of motor 

skills using regression algorithms, the high validity of the proposed predictor variables for 

evaluating the criterion variable was confirmed, with an error of less than 0.34, indicating that 

these motor abilities are highly valid attributes for estimating the SPR60m. When evaluating 

the common variables of the participants relative to the dependent variable using different 

algorithms, the values of the correlation coefficient CC> 0.7 were also obtained, and 

particularly interesting results were obtained by using neural networks and support vector 

machines – SVM that failed to outperform the RBF algorithm neural network, and also 

linear regression, which is one of the simplest algorithms for the regression problem, and all 

together suggests that the assessment analysis of the Sprint attribute at 60 meters is indeed a 

challenging task. 

The use of these algorithms today represents a significant approach in determining 

complex problems and the invention of highly realistic models in the field of sport, so it is 

used to estimate predictions of outcomes, such as talent identification, evaluating the strategy 

of the game, predicting load in training, predicting the frequency of injuries in sports, 

predicting performance in both individual and team sports (McCullagh & Whitfort, 2013; 

Silva et al, 2007; Dutt-Mazumder, Button, Robins, & Bartlett, 2011; Fister, Fister, & Fister, 

2019). Recently, the application of these algorithms has become an integral part of many 

sports training strategies in order to improve technical-tactical tasks on the one hand, and 

also psycho-physical performance, following the training session tactics, evaluating, 

optimizing and advancing athletes through quick interactive feedback answers. Their 

implementation goes one step further, and the obtained data are used for, for example, 

optimizing the position of players in team sports, for detecting doping in sports, for 

generating a good training process in accordance with the personal abilities of an athlete, 

monitoring their physiological parameters, nutrition, dosing intensity of training in order to 

prevent overtraining, but also for many other purposes, such as the analysis of opponents and 

the detection of their weaknesses (Fister, Ljubić, Nagaratnam-Suganthan, & Perc, 2015). 

The future directions of research in this field will definitely further determine the 

possibilities of added applications of these algorithms as an attractive model for solving 

complex issue responsible for the potential of sports performance. 

CONCLUSION 

The main goal of this study was to examine the influence of certain morphological 

characteristics and a combination of basic and specific motor skills that are important for 

sprint performance in children aged 10 to 16, of both genders. The results suggest that a 

large number of morphological characteristics are in a statistically significant positive 

correlation with sprint performance, in the U10 equally among boys and girls, in U12 a 
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slightly higher positive correlation for the girls, and in U14 and U16 for the boys, which 

is consistent with the manner of biological maturation and development. Analyzing motor 

skills, the highest number of positive statistically significant correlations were recorded in 

the tests of explosive power of the upper and lower extremities, the agility test, and the tests 

of horizontal and vertical jumps. Using different types of mathematical algorithms for data 

mining ((LR, M5, KNN, SVM, MLP, RBF), we tested our chosen set of predictor variables 

for evaluating the criterion variable and we obtained all the algorithms in high value attribute 

correlation with output dependent variable, where the coefficient of correlation is CC> 0.7, 

indicating that they can continue to be used with high reliability to estimate our specific 

SPR60 criterion variable. The application of these algorithms in the monitoring of the 

training process can enable the creation of highly reasonable prediction models of sports 

performance achievement by using previously selected competent variables. 

The practical, applicative value of the obtained results is based on the premise that with 

the training of carefully selected exercises, adequate programming and optimum load, a 

significant level of morphological characteristics and motor skills that are indicative for 

sprint performance can be achieved, especially in children and adolescents in the plastic 

growth and development period. 
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REGRESIONI ALGORITMI U PROCENI UTICAJA 

MORFOLOŠKIH I MOTORIČKIH KARAKTERISTIKA 

NA SPRINT 60-METARA 

Cilj ovog rada je da se identifikuju relacije između morfoloških parametara i motoričkih 

sposobnosti koje su važne za performansu sprinta kod dece od 8 do 16 godina, oba pola, podeljenih u 

četiri uzrastne grupe (U10, U12, U14, U16). Uzorak ispitanika činilo je 281 učenika koji su trenirali 

sprintersko trčanje u različitim atletskim klubovima. Set prediktora činilo je dvadeset i pet varijabli za 

procenu morfololoških karakteristika i motoričkih sposobnosti, a kriterijumska varijabla je bila sprint 

na 60m. Višestrukom korelacijom utvrđeno je da je veliki broj morfoloških karakteristika u statistički 

značajnoj pozitivnoj korelaciji sa sprintom, naročito longitudionalne varijable, dok su varijable 

potkožnih nabora pokazale slabu negativnu statičku značajnost u odnosu na zadati kriterijum. U 

domenu motoričkih testova najveći broj pozitivnih statistički značajnih korelacija ustanovljen je u 

testovima ekslozivne snage gornjih i donjih ekstremiteta, testu agilnosti i testovima horizontalnog i 

vertikalnog skoka. Da bi ustanovili koja morfološka obeležja i koje motoričke veštine treba primeniti u 

treningu sprinta, testirali smo korišćene atribute pomoću algoritama za istraživanje podataka (LR, 

M5, KNN, SVM, MLP, RBF). Rezultati potvrđuju da se prediktori koje smo koristili mogu i dalje 

primeniti sa visokom pouzdanošću u proceni sprinterske performanse, a i u monitoringu trenažnog 

procesa u cilju profilisanja boljih sprinterskih dostignuća. 

Kljuĉne reĉi: mladi sportisti, sprint, morfološke karakteristike, motoričke sposobnosti, algoritmi 

regresije 


