
Theoretical Study of Tool Holder Self-excited
Oscillation in Turning Processes Using a Nonlinear
Model
Branko Pejović
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In this paper, by observing a system which is composed from a workpiece and a tool holder, a dynamic and a
mathematical nonlinear model is acquired. These models can be used as a theoretical foundation for research of
self-excited oscillations, which are the object of research in this paper. All relevant oscillator factors are taken into
consideration including a frictional force between flank surface and a machined new surface, which is dependent
on relative system speed. For obtaining more reliable results, the characteristic friction function is expanded
into the Taylor series with an arbitrary number of members regarding required accuracy. The main nonlinear
differential equation of the system is solved by the method of slowly varying coefficients, which is elaborated on
in detail here. One assumption is made, which states that the system has a weak nonlinearity, and respectively
small damping factor. After obtaining the law of motion with relation to a larger number of influential factors,
the amplitude of self-excited oscillation is determined in two different ways. Previously, this is conducted for two
characteristic phases—for stationary and nonstationary modes. At the end of the paper, an analytic determination
and occurrence condition of self-excited oscillations is established. This is an important factor for practical use.
This is also the stability condition. The starting point for this determination was a type of experimental friction
function. Derived relationships allow detailed quantitative analysis of certain parameters’ influence, determination
of stability, and give a reliable description of the process, which is not the case with the existing linear model. After
the theoretical analysis of obtained results, a possibility for application of the suggested method in the machine tool
area is presented. The derived general model based on the method of slowly varying coefficients can be directly
applied in all cases where nonlinearity is not too large, which is usually the case in the field of machine tools. The
greater damping factor causes a smaller amplitude of self-excited steady oscillation. Characteristics of the self-
excited oscillations in the described model mostly depend on the character of the friction force. Angular frequency
in mentioned nonlinear oscillations depends on the amplitude and initial conditions of movement, which is not the
case in free oscillations.

1. INTRODUCTION

Oscillations are an undesirable occurrence in the area of ma-
chine tools. They reduce the precision and quality of machined
surfaces and also negatively influence the productivity of the
machine. The problem of oscillation is also one of the key
questions in cutting machining.1 In general, resonant vibra-
tions are the main cause of any structure failure.2

Machine tools can experience two types of oscillations:
forced oscillations and self-excited oscillation. More impor-
tant is self-excited oscillations, in which the source of oscilla-
tions is the cutting process alone. These oscillations are char-
acterised by the unstable operation of a machine. A simple
change of machining parameters that usually leads to an oc-
currence of unstable operation can be avoided. The search for
the source for these self-excited oscillations and finding a way
for their elimination is some of the most important research in
this area.3 According to one of the theories, self-excited oscil-
lations are generated under the influence of variable friction at
the rake and flank surface of the tool.1 The theory is also de-
veloped, based on a regenerative effect, which states that these

oscillations are caused by varying cross-sections of a chip. In
both these cases, the construction of a machine is not taken un-
der consideration and only the cutting process is observed.4, 5

In recent years, intensive research has been carried out in the
field of self-excited oscillations in machine tools. A whole set
of assumptions, analyses, and theories about self-excited oscil-
lations has been formed. Likewise, whole new models about
their occurrence are being developed. One of the most widely
applied models has originated from an analysis of a cutting
process on a tool’s flank surface.1 Some authors have come
to a compliant model, which predicts a larger stability area
when results are compared with those from the single degree-
of-freedom (SDOF) model. This model takes into account dy-
namic characteristics of both the workpiece and the cutting tool
to attain a better approach to the physical phenomenon.6 It
is found that bifurcation control can also be used to expand
the unconditionally stable region at the expense of the con-
ditionally stable region. By softening cutting nonlinearities,
a subcritical instability is achieved whereas hardening cutting
nonlinearities leads to local supercritical instability.7 Hopf bi-
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furcation may in fact become supercritical for some parameter
values if a state-dependent regenerative delay is incorporated
into the model.8 In this case, small amplitude stable periodic
orbits coexist with the stable cutting solution above the sta-
bility lobes, and no periodic orbits coexist with the stable sta-
tionary cutting. The simple model of a cutting process with
one degree of freedom can be also used to explore the mech-
anism of the chatter vibration.9 Zhehe Yao et al. studied the
effect of parametric excitation on self-excited vibration based
on a model of a van der Pol-Mathieu-Duffing oscillator with
a time delay.10 It reveals that there can be a zero solution for
the oscillator under the effect of parametric excitation, while it
is impossible to have a stable zero equation without paramet-
ric excitation. Another simple model developed by Dombovari
et al. is especially dedicated for the orthogonal cutting process
and can demonstrate chattering behaviour.11 This model is for-
mulated as a delay differential algebraic equation (DDAE) and
includes the regenerative effect of the turning process and the
non-smoothness when contact between the cutting tool and the
workpiece is lost. Pankaj Wahi and Anindya Chatterjee pro-
posed a new approach to study the global dynamics of regen-
erative metal cutting in turning.12 In this case, the cut surface
is modeled using a partial differential equation (PDE) coupled
via boundary conditions to an ordinary differential equation
(ODE) modeling the dynamics of the cutting tool. Rusinek et
al. have studied a nonlinear, externally forced Duffing oscil-
lator both analytically and numerically.13 With the use of the
analytical method, stability lobes for a linear oscillator with
time delay is determined and the fundamental resonance of the
Duffing oscillator with time delay is calculated by means of
the multiple scale method. On the other hand, there are papers
which use different approaches to solving the tool vibration
laws of motion. Three-dimensional simulation is known as a
modern tool for solving problems in the industry.14 Artificial
neural networks are also presented as a powerful tool for ac-
cessing problems in this area of machining.15, 16 In existing lit-
erature, the most realistic model has yet not been developed to
its final form. This is partly because of the unbridgeable math-
ematical problems which arise while solving nonlinear differ-
ential equations.

2. DYNAMIC MODEL OF A CUTTING
PROCESS

From the whole dynamic system of a machine tool, the
workpiece and tool holder are singled out according to
Fig. 1.1, 5 The workpiece has been moving rotationally with
speed Vo = const. The tool holder has the mass m, stiffness
c, and damping b and has the ability to oscillate. The tool and
workpiece are in contact through the rake and flank tool sur-
face. Friction occurs between the tool’s flank surface and the
machined surface of the workpiece. Radial force F2 occurs in
the direction normal to the flank surface. Relative speed can
be calculated through the expression V = Vo ± ẏ, taking into
consideration that ẏ � Vo. Element ẏ presents an absolute
speed. Absolute speed is assumed to be positive with sign mi-
nus in front. This allows us to keep our analysis in the range
of dry friction force dependency from speed (Coulomb law of
friction). Analysis made this way is mathematically more ac-
curate than analysis made with a plus sign. In the case of plus
sign use, it would not have any influence on the final result
since it is oscillatory movement.

If the origin of an OY axis is in static balance, the dynamic

Figure 1. Model of self-excited oscillations in cutting process.

equation of a system will be

m · ÿ + b · ẏ + c · y = Ft. (1)

Friction force is dependent on normal force F2 and coefficient
of friction:

Ft = µ(Vo − ẏ) · F2; (2)

where a friction function is

µ(V ) = µ(Vo − ẏ). (3)

Therefore a friction coefficient is dependent on relative speed
V = Vo − ẏ. Substituting the Eq. (2) into Eq. (1) results in

m · ÿ + b · ẏ + c · y = µ(Vo − ẏ) · F2. (4)

Differential function f(x), in area of a point xo can be ex-
panded into Taylor series according to an expression:

f(x) = f(xo) + f ′(xo) ·
x− xo

1!
+ f ′′(xo) ·

(x− xo)
2

2!
+

f ′′′(xo) ·
(x− xo)

3

3!
+ . . .+ f (n)(xo) ·

(x− xo)
n

n!
+

Rn(x); (5)

whereRn(x) is the leftover of Taylor series which can be made
negligibly small.16 Based on Eq. (5) a function f(x) can be
derived, which is in the form of polynomial degree n, Fig. 2:17

f(xo + h) = f(xo) + f ′(xo) · h+
f ′′(xo)

2!
· h2 +

f ′′′(xo)

3!
· h3 + . . .+

f (n)(xo)

n!
· hn; (6)

here is h > 0, arbitrarily small value. Based on Eq. (6), the
following formula can be derived:

f(xo − h) = f(xo)− f ′(xo) · h+
f ′′(xo)

2!
· h2 −

f ′′′(xo)

3!
· h3 + . . .+ (−1)n · f

(n)(xo)

n!
· hn. (7)

Taking into consideration that Vo is considerably greater
than ẏ and according to analogy, with the use of Eq. (7), the
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Figure 2. Development of function into Taylor series in area of a point xo.

development of a series for friction function can be made:

µ(Vo − ẏ) = µ(Vo)− µ′(Vo) · ẏ +
1

2!
· µ′′(Vo) · ẏ2 −

1

3!
· µ′′′(Vo) · ẏ3 + . . .+ (−1)n · 1

n!
· µ(n)(Vo) · ẏn. (8)

Assuming that a friction function can be approximated with
sufficient precision using a polynomial of the third degree (n =
3), then it is enough to take into consideration the first four
elements from Eq. (8).

Taking into consideration the prior explanation, substituting
Eq. (8) into Eq. (4) will result in

m · ÿ + b · ẏ + c · y =

[
µ(Vo)− µ′(Vo) · ẏ +

1

2!
· µ′′(Vo) · ẏ2 −

1

3!
· µ′′′(Vo) · ẏ3

]
· F2. (9)

Dividing with m, Eq. (9) can be written as

ÿ + ω2 · y =

[
µ(Vo)− µ′(Vo) · ẏ −

b

F2
· ẏ +

1

2!
· µ′′(Vo) · ẏ2 −

1

3!
· µ′′′(Vo) · ẏ3

]
· F2

m
; (10)

where angular frequency is

ω2 =
c

m
. (11)

Equation (10) can be written as

ÿ + ω2 · y =

{
µ(Vo)−

[
µ′(Vo) +

b

F2

]
· ẏ +

1

2!
· µ′′(Vo) · ẏ2 −

1

3!
· µ′′′(Vo) · ẏ3

}
· F2

m
. (12)

With an introduction of a substitution:

z = y − F2

m
· µ(Vo)
ω2

; ż = ẏ; z̈ = ÿ; (13)

the balanced position will be shifted, so from Eq. (12) follows:

z̈ + ω2 · z = F2

m

[
− µ′(Vo) · ż −

b

F2
· ż +

1

2!
· µ′′(Vo) · ż2 −

1

3!
· µ′′′(Vo) · ż3

]
; (14)

respectively:

z̈ + ω2 · z =
[
− F2 · µ′(Vo)

m
· ż − b

m
· ż +

F2 · µ′′(Vo)
2 ·m

· ż2 − F2 · µ′′′(Vo)
6 ·m

· ż3
]
. (15)

Damping factor b for the observed dynamic system is a small
value and can be neglected,1 thus it can be transferred in front
of the brackets in Eq. (15):

z̈ + ω2 · z = b ·
{[

− F2 · µ′(Vo)
b ·m

− 1

m

]
· ż +

F2 · µ′′(Vo)
2 · b ·m

· ż2 − F2 · µ′′′(Vo)
6 · b ·m

· ż3
}
. (16)

It is obvious that, for instance, where b = 0, Eq. (16) becomes
linear. Equation (16) can be simplified as

z̈ + ω2 · z = b ·
(
−α · ż + β · ż2 − γ · ż3

)
; (17)

where the constants are

α =
F2 · µ′(Vo)
b ·m

+
1

m
; β =

F2 · µ′′(Vo)
2 · b ·m

;

γ =
F2 · µ′′′(Vo)
6 · b ·m

. (18)

3. SUGGESTION FOR PROBLEM SOLVING
METHOD

One method for efficiently solving nonlinear differential
Eq. (17) is presented below. This procedure is usually known
as the method of slowly varying coefficients and it is realised
based on the Krylov-Bogolyubov theorem.18–21 It will be
briefly explained below to give an idea of the conditions un-
der which it is derived. In the future, this will be used for its
specific application for solving an Eq. (16) and respectively
Eq. (17).

In the suggested method, an assumption is made that the
oscillating parameters—for example, mass—can be a variable,
and its change is slow. The differential equation is a nonlinear
type:

m(τ) · d
2x

dt2
+ k · x = ε · F

(
x,
dx

dt

)
; (19)

where τ = ε·t is the so-called slowly varying coefficients and ε
the small constant parameter. Function F

(
x, dxdt

)
is describing

weak nonlinearity in the system, because of the member ε in
front. Once again, the derived Eq. (17) will be transformed into
Eq. (19), which is noticeable from its structure. Equation (19)
can be written as

d2x

dt2
+ ω2(τ) · x = ε · f

(
τ, x,

dx

dt

)
; (20)

where
ω2(τ) =

k

m(τ)
; (21)

and

f =
1

m(τ)
F

(
x,
dx

dt

)
. (22)

If ε = 0 and the mass of the system is constant (ω = const),
Eq. (20) will be linear and its solution would be

x = a · cosψ; dx

dt
= −a · ω · sinψ; (23)
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where a is an amplitude and phase of oscillation:

ψ = ωt+ θ. (24)

In Eq. (24), θ is a starting phase. As stated above, the mass
of the system is slowly changing and the nonlinearity is very
small. In the first approximation as a rough solution, Eq. (23)
can be adopted under the condition that values a and θ are con-
sidered to be dependent on the time t. This is the basic idea for
solving the initial Eq. (19). Differentiation of the expression
in Eq. (23) occurs twice with respect to time, taking into con-
sideration that a = a(t) and θ = θ(t), and by using certain
mathematical transformation, values of the differential dadt and
dθ
dt are determined. The next step is to integrate the obtained
equation with respect to an angle ψ within the range from 0 to
2π. Using an average value for a certain range, and taking into
consideration that “slow time” behaves as a constant and dif-
ferential dψdt is regarded in accordance with Eq. (25), the final
system of differential equations is generated:

da

dt
= − ε · a

2 · ω(τ)
· dω(τ)

dτ
− ε

2 · π · ω(τ) ·m(τ)
·

2π∫
0

F [a · cosψ − a · ω(τ) · sinψ] · sinψ dψ; (25)

dψ

dt
= ω(τ)− ε

2 · a · ω(τ) ·m(τ)
·

2π∫
0

F [a · cosψ − a · ω(τ) · sinψ] · cosψ dψ. (26)

For a specific form of function F
(
x, dxdt

)
, in this case Eq. (17),

integrals are calculated on right sides of Eq. (25) and (26). Af-
ter solving differential Eqs. (25) and (26) as a system, the ob-
tained solutions are then replaced in Eq. (23). For a particular
problem according to Eq. (16):

b = ε; m(τ) = 1; (27)

ω2 = ω2(τ) = const ;
dω(τ)

dτ
= 0. (28)

Function F depends only on dz
dt in compliance with Eq. (17):

F = α · ż + β · ż2 + γ · ż3 = F

(
dz

dt

)
. (29)

Then the solution will be:

z = a(τ) · cosψ; (30)
dz

dt
= −a · ω · sinψ = ż. (31)

First element of Eq. (25), because of ω = const , is equal to
zero. Small value of ε is replaced by coefficient b, while ele-
ment beside z̈ in Eq. (16) is equal to one, that is m(τ) = 1.
Function F is dependent only on ż = −a · ω · sinψ, thus the
shape of Eqs. (25) and (26) is

da

dt
= − b

2 · π · ω
·

2π∫
0

F [−a · ω · sinψ] · sinψ dψ; (32)

dψ

dt
= ω − b

2 · π · a · ω
·

2π∫
0

F [−a · ω · sinψ] · cosψ dψ.

(33)

Taking into consideration the form of function F , according to
Eq. (29), Eqs. (32) and (33) will gain form:

da

dt
= − b

2 · π · ω
·

2π∫
0

[
− α · a · ω · sinψ +

β · a2 · ω2 · sin2ψ − γ · a3 · ω3 · sin3ψ
]
· sinψ dψ;

(34)

dψ

dt
= ω − b

2 · π · a · ω
·

2π∫
0

[
− α · a · ω · sinψ +

β · a2 · ω2 · sin2ψ − γ · a3 · ω3 · sin3ψ
]
· cosψ dψ.

(35)

It can be noted that expressions in middle brackets under the
integral are equal. Certain trigonometric integrals in Eqs. (34)
and (35) will be17

2π∫
0

sin2ψ dψ =

[
1

2
ψ − 1

4
sin2ψ

]2π
0

= π;

2π∫
0

sin3ψ dψ =

[
− cosψ +

1

3
cos3ψ

]2π
0

= 0;

2π∫
0

sin4ψ dψ =

[
3

8
ψ − 1

4
sin2ψ +

1

32
sin4ψ

]2π
0

=
3

4
π;

2π∫
0

sinψ · cosψ dψ =

[
1

2
sin2ψ

]2π
0

= 0;

2π∫
0

sin2ψ · cosψ dψ =

[
1

3
sin3ψ

]2π
0

= 0;

2π∫
0

sin3ψ · cosψ dψ =

[
1

4
sin4ψ

]2π
0

= 0. (36)

The value of a, when considering conditions for solving final
equations, is considered constant. Replacing values of integral
Eq. (36) into Eqs. (34) and (35) will be

da

dt
= − b

2 · π · ω
·
(
α · a · ω · π +

β · a2 · ω2 · 0 + γ · a3 · ω3 · 3
4
π

)
.

Respectively:

da

dt
= −ab

2
·
(
α+

3

4
γ · a2 · ω2

)
. (37)

By splitting the variables, the result of the integral is:

da2

dt
= 2a

da

dt
= −a2b ·

(
α+

3

4
γ · a2 · ω2

)
. (38)

Integral Eq. (38) is solved by the partial fraction method, re-
spectively, with integration by substitution:

b · dt = −da2

a2 ·
(
α+ 3

4γ · a2 · ω2
) . (39)
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According to Eq. (38) and using substitution a2 = u:

b · dt = −du
u ·
(
α+ 3

4γ · ω2 · u
) . (40)

Taking into consideration that:

1

x(K1x+K2)
=

1

K2x
− K1

K2
· 1

K1x+K2
;

respectively:∫
dx

x(K1x+K2)
= − 1

K2
· ln K1x+K2

x
.

According to Eq. (39), it follows that:

b · α · t = ln
a2

3
4γω

2a2 + α
+ lnC. (41)

The integration constant is obtained from initial conditions for
t = 0 and a = a0

C =
3

4
· γ · ω2 +

α

a20
.

Replacement of a constant C in Eq. (41) will result in

b · α · t = ln

(
3
4 · γ · ω2 + α

a20

)
· a2

3
4 · γ · ω2 · a2 + α

. (42)

According to Eq. (42), after a certain mathematical transfor-
mation, the result is the change of amplitude over time:

a2 =
α(

3
4 · γ · ω2 + α

a20

)
· e−bαt − 3

4 · γ · ω2
.

Respectively:

a =

√
α(

3
4 · γ · ω2 + α

a20

)
· e−bαt − 3

4 · γ · ω2
. (43)

Substituting integral Eq. (36) into differential Eq. (35), the
second dependency is obtained:

dψ

dt
= ω − b

2π · a · ω
·

2π∫
0

[
− α · a · ω · sinψ +

β · a2 · ω2 · sin2ψ − γ · a3 · ω3 · sin3ψ
]
· cosψ dψ;

dψ

dt
= ω − b

2π · a · ω
·
(
− α · a · ω · 0 +

β · a2 · ω2 · 0 + γ · a3 · 0
)
= ω. (44)

According to Eq. (24), it follows that:

dψ = ω · dt. (45)

Values for initial conditions are t = 0, ψ = 0. According to
Eq. (45), it follows that the definite integral is

ψ∫
0

dψ =

t∫
0

ω dt. (46)

From here, the final phase of oscillation will be

ψ = ω · t. (47)

Using Eq. (30) and the solution from Eqs. (43) and (47), the
law of motion is obtained:

z =

√
4a20 · α · ebαt

4α+ 3γω2a20 − 3γω2a20e
bαt

· cosωt. (48)

According to the initial coordinate system in Eq. (13), the final
law of motion is

y = z +
F2

m
· µ(Vo)
ω2

; (49)

y =

√
4a20 · α · ebαt

4α+ 3γω2a20 − 3γω2a20e
bαt

· cosωt+ F2

m
· µ(Vo)
ω2

.

(50)

Constants α and γ are defined by Eq. (18). Notable is the fact
that law of motion is independent from constant β.

In self-excited processes, as it is described, it is typical to
find a steady state in which the amplitude a is constant under
an unlimited increase of time. The simplest way of obtaining
this amplitude is through expression of Eq. (37) when the result
is equal to zero:

da

dt
= 0. (51)

Respectively:

ab

2

(
α+

3

4
γ · a2 · ω2

)
= 0. (52)

From here it follows that

α+
3

4
γ · a2 · ω2 = 0.

Respectively:

ast =
2

ω

√
α

−3γ
. (53)

Solution in Eq. (53) can be also obtained using a different
approach starting from expression for amplitude from Eq. (43):

ast = lim
t→∞

a = lim
t→∞

√
4a20 · α · ebαt

4α+ 3γω2a20 − 3γω2a20e
bαt

. (54)

Dividing the element under square root with ebαt:

ast = lim
t→∞

√
4a20 · α

4α+3γω2a20
ebαt

− 3γω2a20
.

From here the amplitude of steady self-excited oscillations will
be

ast =

√
4a20α

−3γω2a20
=

2

ω

√
α

−3γ
; (55)

which is in agreement with solution from Eq. (53). It should
be noted that amplitude ast is not dependent on constant β.
Substituting the coefficients α and γ according to Eq. (18) in
Eq. (55), it follows:

ast =
2

ω

√√√√ F2·µ′(Vo)
b·m + 1

m

−3 · F2·µ′′′(Vo)
6·b·m

. (56)
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Respectively, the final form:

ast =
2

ω

√
−2 · [F2 · µ′(Vo) + b]

F2 · µ′′′(Vo)
. (57)

According to referenced data, experimental dependency of
the friction coefficient from relative speed in a large number of
cases is a polynomial of the third degree:22, 23

µ(V ) = A · V 3 +B · V 2 + C · V +D. (58)

The above squared element standing next to the B can be
mostly disregarded because of its very small value (B ≈ 0).
Taking into consideration this fact, Eq. (58) can be interpreted
with high accuracy as

µ(V ) = A · V 3 + C · V +D. (59)

From experimental dependencies in Fig. 3, it can be noted that
in all cases, it applies that A > 0, C < 0, D > 0. This also
follows from the shape of the experimental curve. From the
condition of the minimum of function µ(V ), it follows A > 0.
With the application of repeated differentiation, Eq. (59) will
be

µ′(V ) = 3 ·A · V 2 + C; µ′′(V ) = 6 ·A · V ;

µ′′′(V ) = 6 ·A = const . (60)

The denominator in Eq. (57) is greater than zero. Taking into
consideration that µ′′′(V ) > 0, it follows that the numerator
has to be positive. It will happen only in the case when

F2 · µ′(Vo) + b < 0. (61)

Respectively:

µ′(Vo) < − b

F2
; (62)

or because b > 0:
µ′(Vo) < 0. (63)

From here it follows that Eq. (63) presents the condition for
occurrence of self-excited oscillation for the observed model
of the tool holder in the turning machining. The gradient of
change for the friction coefficient curve µ′(Vo) is supposed to
be negative, respectively, and the curve must have a descending
character, as in Fig. 3; for instance, where µ′(Vo) > 0 system
is stable, and there is no possibility for self-excited oscillation
occurrence. Unstable area is crosshatched on Fig. 3.

By simplification of the derived nonlinear differential
Eq. (15), in a way that nonlinear elements are discarded, the
linear equation is obtained:

z̈ + ω2z =

[
−F2 · µ′(Vo)

m
− b

m

]
· ż. (64)

According to a theory of linear second-order differential equa-
tions with constant coefficients,24 the condition of dynamic in-
stability for observed model is obtained:

F2 · µ′(Vo)
m

+
b

m
< 0. (65)

Respectively:

F2 · µ′(Vo) + b < 0;

µ′(Vo) < − b

F2
; (66)

and finally:
µ′(Vo) < 0. (67)

This is in agreement with previously obtained condition in
Eq. (63).

Figure 3. Characteristics of friction coefficient in relation with relative speed,
with representation of unstable area.

4. CONCLUSIONS

For obtaining a solution for the required differential equa-
tion, there is no general procedure, so the problem is solved
with the method of slowly varying coefficients. This method
falls within a group of approximate methods because of the
fact that solutions of a nonlinear problem do not exist in a final
form.

General methods for solving nonlinear problems also do not
exist. The main reason for this is the fact that general features
that are valid in linear systems are not valid here. The observed
problem of self-excited oscillation could be described through
linear theory only roughly and the obtained solution would not
have sufficient precision. The main reason for this is mostly
that linearization drastically changes the system’s structure and
the structure of differential equations.

The obtained law of motion is in the form of complex
Eq. (50), where larger numbers of influential factors are in-
cluded. This law provides detailed quality analysis of the pro-
cess and determining speed ẏ = dy

dt , respectively, and acceler-

ation ÿ = d2y
dt2 .

As it can be seen based on the form of the experimental
curve for the friction coefficient and relative speed dependency,
self-excited oscillations are impossible in the area of ascending
characteristics of the friction coefficient and vice versa. This
conclusion can be also drawn from simplification of the model
through linearization.

The amplitude of self-excited oscillations descend when the
angular frequency is increasing, which follows from Eq. (55).
Also, a greater damping factor causes a smaller amplitude of
self-excited steady oscillation, which follows from the same
equation. Characteristics of self-excited oscillations in the de-
scribed model mostly depend on the character of the friction
force. This conclusion is extracted from derived dependencies.
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Angular frequency in the mentioned nonlinear oscillations
depends on the amplitude, Eq. (57), and initial conditions of
movement. This is not the case in free oscillations described
with the linear model. The presented problem can be solved
on the basis of the experimental function of friction using
Eq. (58).

The derived general model based on the method of slowly
varying coefficients can be directly applied in all cases where
nonlinearity is not too large. This is usually the case in the
field of machine tools. There is no major limitation in the
model application. In general, the function F can have more
complex character than the mentioned model; for example,
F = F (x, ẋ). One of the most characteristic examples of
the model application would be gear for the linear movement
of machine tools where there is a friction on contact surfaces.
According the theoretical analysis of the results, this paper is a
base for further experimental research.
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Naučna knjiga, Beograd, (1990).

International Journal of Acoustics and Vibration, Vol. 23, No. 3, 2018 313

http://dx.doi.org/10.1177/1077546312455081
http://dx.doi.org/10.1016/j.ijmachtools.2007.10.016
http://dx.doi.org/10.1007/s11071-010-9811-6
http://dx.doi.org/10.1016/j.ijnonlinmec.2007.11.002
http://dx.doi.org/10.1016/S0960-0779(01)00176-X
http://dx.doi.org/10.1016/S0960-0779(01)00176-X
http://dx.doi.org/10.1016/j.jsv.2011.01.031
http://dx.doi.org/j.ijnonlinmec.2010.09.016
http://dx.doi.org/j.ijnonlinmec.2007.10.010
http://dx.doi.org/10.1016/j.cnsns.2006.08.003
http://dx.doi.org/10.1016/j.ymssp.2007.11.026

	INTRODUCTION
	DYNAMIC MODEL OF A CUTTING PROCESS
	SUGGESTION FOR PROBLEM SOLVING METHOD
	CONCLUSIONS
	REFERENCES

