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Abstract: The misuse of psychoactive substances is
attracting a great deal of attention from the general public.
An increase use of psychoactive substances is observed
among young people who do not have enough awareness
of the harmful effects of these substances. Easy access to
illicit drugs at low cost and lack of effective means of rou-
tine screening for new psychoactive substances (NPS)
have contributed to the rapid increase in their use. New
research and evidence suggest that drug use can cause a
variety of adverse psychological and physiological effects
on human health (anxiety, panic, paranoia, psychosis,
and seizures). We describe different classes of these NPS
drugswith emphasis on themethods used to identify them
and the identification of their metabolites in biological
specimens. This is the first review that thoroughly gives
the literature on both natural and synthetic illegal drugs
with old known data and very hot new topics and investi-
gations,which enables the researcher to use it as a starting
point in the literature exploration andplanning of the own
research. For the first time, the conformational analysis
was done for selected illegal drugs, giving rise to the
search of the biologically active conformations both the-
oretically and using lab experiments.
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Abbreviations

NMR nuclear magnetic resonance
MS mass spectrometry
NPS new psychoactive substances
USA United States of America
GABA γ-aminobutyric acid
EU European Union
LSD lysergic acid diethylamide
LSA lysergamide
UK United Kingdom
DMT N,N-dimethyltryptamine
NE norepinephrine
5-HT 5-hydroxytryptamine
ENT ears, nose and throat
IV intravenous
GC-MS gas chromatography-mass spectrometry
IR infra-red
CNS central nervous system
MEA microelectrode arrays
hDAT human dopamine reuptake transporter
hNET human norepinephrine reuptake

transporter
SPE solid-phase extraction
QuEChERS quick (Qu), easy (E), cheap (Ch), effective

(E), rugged (R) and safe (S)
LLE liquid–liquid extraction
dSPE dispersive solid phase extraction
ELISA enzyme-linked immunosorbent assay
UHPLC ultrahigh-performance liquid

chromatography
TOF time-of-flight
UV-Vis ultraviolet-visible
PDA photodiode array detector
HPLC high-performance liquid chromatography
LC-HRMS liquid chromatography–high-resolution

mass spectrometry
CYP2D6 cytochrome P450 2D6
FMO3 flavin-containing monooxygenase 3
NAT1 N-acetyltransferase 1
NAT2 N-acetyltransferase 2
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SGK1 serum/glucocorticoid regulated
kinase 1

PER2 period circadian regulator 2
CB cannabinoid receptor
EMCDDA European monitoring centre for drugs

and drug addiction
CBD cannabidiol
CBN cannabinol
GPCR G protein-coupled receptor
CB1R cannabinoid receptor type 1
CB2R cannabinoid receptor type 2
pHLM pooled human liver microsome assay
SARs structure–activity relationships
AAI aminoalkylindole
SCs synthetic cannabinoids
UGT UDP glucuronosyl transferase
HEK293 human embryonic kidney 293
HNK hydroxy-norketamine
NPD nitrogen–phosphorus detector
CIMS chemical ionization mass

spectrometry
HS-SPME headspace-solid phase

microextraction
AMT alpha-methyltryptamine
DIPT diisopropyltryptamine
MAO monoamine oxidase
NSO new synthetic opioids
LOD limit of detection
DBZD designer benzodiazepines
US-LDS-DLLME ultra-assisted low-density solvent dis-

persive liquid–liquid microextraction
QSAR quantitative structure–activity

relationship
DFT density functional theory
UPLC ultra-performance liquid

chromatography
DART direct analysis in real time
TLC thin layer chromatography
EIA enzyme immunoassay
APCI atmospheric pressure chemical

ionization
NACE nonaqueous capillary electrophoresis
UPC2 SFC-PDA ultraperformance convergence chro-

matography supercritical fluid chro-
matography–photodiode array

NIRS near-infrared spectroscopy
HPTLC high-performance thin-layer

chromatography
FID flame-ionization detection
ECD electrochemical detection
DESI-MS desorption electrospray ionization

mass spectrometry

HSCCC high-speed counter-current
chromatography

4-MMC 4-methylmethcathinone

MDPV 3,4-methylenedioxypyrovalerone

4-MEC 4-methylethcathinone

4-MePPP 4′-methyl-α-
pyrrolidinopropiophenone

α-PVP α-pyrrolidinopentiophenone
4-FMC 4-fluoromethcathinone

3-FMC 3-fluoromethcathinone

α-PBP α-pyrrolidinobutiophenone
3-MMC 3-methylmethcathinone

MDMA 3,4-methylenedio-
xymethamphetamine

MDPBP 3′,4′-methylenedioxy-α-
pyrrolidinobutyrophenone

3,4-DMMC 3,4-dimethylmethcathinone

PV9 1-phenyl-2-(pyrrolidin-1-yl)octan-
1-one

IS internal standard

TM5 transmembrane helix 5

TM6 transmembrane helix 6

r5-HT2AR rat HT2A receptor

BZP benzylpiperazine

1 Introduction

The number of health-related incidents caused by the use
of illegal drugs is increasing rapidly, and so is the need
for better understanding of their physiological effects and
fast identification [1].

These substances can be grouped depending on the
chemical structure into synthetic cannabinoids, synthetic
cathinones, phenethylamines, arylcyclohexylamines, trypt-
amines, indolalkylamines, new synthetic opioids, pipera-
zines anddesigner benzodiazepines [2,3], andon the basis
of their origin on psychoactive drugs of natural origin and
syntheticmolecules. Previous studies have been limited to
the analytical and toxicological data related to only some
classes, and their representatives [4–30], reviews of the
particular group [31–35], or particular topic [36], but failed
to address all aspects: identification, quantification, synth-
esis, case reports, and statistics. The last few years have
witnessed research on origin and the trafficking route for
various psychoactive molecules (using both 13C NMR spec-
trometry and 13C, 15N MS) [37], and the use of machine
learning to predict the similarity of new psychoactive sub-
stances (NPS)with the classical NPS [38]. This article seeks
to address the topic in the broadest spectrum available.
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2 Psychoactive drugs of natural
origin

Numerous plants possess psychoactive properties. Areca
catechu, Argyreia nervosa, Ayahuasca, Catha edulis,
Ipomoea violacea, Mandragora officinarum, Mitragyna
speciosa, Pausinystalia johimbe, Piper methisticum,
Psilocybe, Rivea corymbosa, Salvia divinorum, Sceletium
tortuosum, Lactuca virosa, and Lophophora williamsii
have been receiving much attention due to their common
misuse [34]. Mainly found in Asia and South America, the
misuse of these plants is underestimated due to religious
and traditional practices [34]. Catha edulis (common
name: khat; mainly in the USA and the Netherlands),
Mitragyna speciosa (common name: kratom; mainly in
Asia), and Salvia divinorum are monitored by the United
Nation Office on Drugs and Crime [34].

2.1 Areca catechu

Areca catechu belongs to Arecaceae family, and it is a
native palm tree in Sri Lanka and Malaysia, abounded
in Asia and Africa and exported to USA and Europe by
the Asian communities. The fruit of this plant (areca nut)
is traditionally chewed and represents one of the most
used drugs (after caffeine, ethanol, and nicotine) [32]. It
is consumed either in combination with other substances
(“betel quid”) or alone giving the stimulation and relaxa-
tion during ceremonies and as a traditional remedy in
China [39]. The psychoactive property of the plant is
mainly caused due to the presence of arecoline, a GABA
competitive inhibitor inducing agitation and euphoria
[40–42]. The available data on the analytical determina-
tion of the active component are presented in Table 1.

There are no measures regarding the use of the Areca
catechu or its active compounds in the EU and the
USA [34].

2.2 Argyreia nervosa, Ipomea violacea and
Rivea corymbosa

Argyreia nervosa (common names: Hawaiian Baby Wood-
rose, Adhoguda or Vidhara, Elephant Creeper, and Woolly
Morning Glory), Ipomea violacea (common name:
morning glory), and Rivea corymbosa are plants with
characteristic pink flowers with the origin at the Indian
subcontinent and transferred to Africa, Europe, and

subtropical America [43]. The psychoactive alkaloids
(isoergine and ergine) are mainly found in the plant
seeds, and they show psychoactive effects quite similar
to lysergic acid diethylamide (LSD), but not so intensive
[3,44]. Similarly to ergot alkaloids, ergine is assumed to
bind to D2-dopamine receptors [45]. The available data
on the analytical determination of the active components
are presented in Table 1.

There are specific national regulations regarding LSA
in Italy and UK. In the USA, the LSA and its related pro-
ducts are controlled (Schedule III drug in the Controlled
Substances Act) as a depressant, and LSA is also on the
list of U.S. Code of Federal Regulations as a possible LSD
forerunner, but the plant and the seeds can be bought
without any problem [34].

2.3 Banisteropsis caapi and Psychotria
viridis

Ayahuasca (Quechuawordmeaning “soul rope”) is a brew
characteristic for the South America used for religious and
therapeutic purposes in Northwestern Amazonian coun-
tries for many centuries, and now by some religious sects
(Santo Daime, Baraquinha; prepared from Banisteropsis
caapi stems mixed with P. viridis, Mimosa hostiles,
Mimosa tenuiflorea, Anadenanthera spp., and/or other
plants with psychoactive compounds) [10,46]. The psy-
choactive compound found in Ayahuasca is DMT that
behaves as 5HTA/2c receptor agonist [47].

According toHamill et al. [48], Ayahuascahas effect on
the pupil size, body temperature, cardiovascular system,
endocrine system, immunesystembuthas shownnoaddic-
tion potential. The most common side effects are agitation,
hypertension, tachycardia, mydriasis, and vomiting.

The available data on the analytical determination of
the active components are presented in Table 1.

There is a controversy about the control status of
Ayahuasca because of its composition. Consumption of
β-carbolines and P. viridis are not forbidden [34].

2.4 Chata edulis

Chata edulis (common name: khat) belongs to the
Celestraceae family, and it is a native plant of Ethiopia,
Arabian Peninsula, East Africa and used widely in Yemen
[49]. Its use is forbidden in Denmark, Germany, France,
Ireland, theUnitedStates, andCanada,while it is usedas a
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Table 1: Techniques used for the detection of new psychoactive substances of natural origin

Plant The main detected
compound

Biological matrices Method used References

Areca catechu Arecoline Plant material HPLC [41]
Arecoline Human plasma [84–92]

Saliva GC
Hair HPLC
Buccal cells UPLC
Meconium DART-MS/MS
Cord serum
Breast milk

Argyreia nervosa, Ipomea
violacea, and Rivea corymbose

LSA Human blood urine UPLC [93,94]
LSA Plant material (seeds) HPLC [44,95–97]

TLC
Capsules GC

Banisteropsis capii and
Psychotria viridis

Plant material HPLC [98–106]
GC

Harmine GC
Harmaline LC
DMT DART-HRMS

HPLC
Harmine Human urine UHPLC [98,107–111]
Harmaline Plasma LC
DMT Hair HPLC

GC
Chata edulis Cathinone Plant material (leaves

and green)
HPLC [112–114]

Cathine GC
Human urine Immunoassay [115–118]

Cathinone Hair HPLC
Cathine Blood GC

Oral fluid
Mandragora officinarum Hyoscyamine Human blood urine GC [119–125]

Scopolamine Plasma HPLC
Plant material EIA

Mytragina speciosa Mitragynine Human blood HPLC [126–140]
7-OH-mitragynine Urine 1H-NMR

Rat plasma 13C-NMR
HPLC

Mitragynine Plant material HPLC, GC, NMR, HPLC,
DART-HRMS, HPLC

[140–146]

7-OH-mitragynine Kratom products
Pausinystalia johimbe Yohimbine Plant material TLC, HPLC [147–156]

Yohimbine HPLC [157,158]
Urine NACE
Blood GC
Plasma UPLC

UHPLC
Piper methysticum Kawain Kawa samples

(powder or liquid)
UPLC [159–181]

HPLC
Plant material UPC2 SFC detector, NIRS
Food supplement HPTLC

GC
UHPLC
FTIR

Kawain Human urine blood GC [182–186]
Serum LC
Hair LC
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recreational and traditional habit in Ethiopia, Yemen,
Israel, Somalia [49]. S-(−)-Cathinone is the main alkaloid
in khat leaves [50]. Symptoms of psychosis and violent
behaviors are widely displayed in khat chewers, particu-
larly heavy consumers [34]. Identified toxic effects on the
gastrointestinal system, respiratory, cardiovascular,
endocrine, and genitourinary system cause increased
blood pressure, tachycardia, constipation, insomnia, gen-
eral malaise, headache, irritability, and impaired sexual
potency are found in men [50–52].

The available data on the analytical determination of
the active components are presented in Table 1.

2.5 Mandragora officinarum

Mandragora officinarum (common name: mandrake) is a
native in the area of the eastern Mediterranean, but it is
also abundant in theMiddle East, southern Europe, northern
Africa, and Himalayas [53]. It possesses aphrodisiac,
healing, hallucinogenic, and poisonous properties [34].

The available data on the analytical determination of
the active components are presented in Table 1.

In EU and USA, there are no legal measures regard-
ing the use of the Mandragora officinarum or active com-
pounds isolated from the plant [34].

2.6 Mytragina speciosa

Mytragina speciosa (common name: kratom) originated
in South East Asia [47,54]. Fresh leaves are traditionally
chewed, and the dried leaves can be smoked or chewed.
Although the molecular structure of the active compo-
nents (mitragynine, speciogynine, paynantheine, and
speciociliatine) is different from opioids, they possess
the affinity for opioid receptors leading to the analgesic
effect (mytragynine to supraspinal μ-opioid receptors
and δ-opioid receptors). The second mechanism of
action is the inhibition of pain involving the release
of the neurotransmitters by reversible blocking of the
Ca2+ channels [55]. Gastrointestinal effects, anti-inflam-
matory properties, antidepressant activity, and anti-
oxidant properties have also been published [56–58].

The available data on the analytical determination of
the active components are presented in Table 1.

Table 1: continued

Plant The main detected
compound

Biological matrices Method used References

GC
Psylocibe spp. Psilocin Human urine LC [69,93,109,187–195]

Psilocybin glucuronide Plasma HPLC
Serum

Psilocin Plant material
(sclerotia)

LC [174]
Psilocybin

Salvia divinorum Salvinorin A Plant material TLC/DESI-MS [196–203]
GC
HPLC
TLC/GC
HPLC

Salvinorin A Plasma GC [73,74,204]
Urine
Saliva
Sweat

Sceletium tortuosum Mesembrine Plant material EC-MS [205–208]
Mesembrenone UPLC

HSCCC
Mesembrine Rat urine and plasma GC [209,210]

LC
Mesembrenone Human liver LC, UHPLC

Lactuca virosa LC Plant material HPLC [211–214]
LCP HPLC

Lophophora williamsii Mescaline Plant material HPLC [215–218]
LC
Ion-interaction HPLC
HPLC

64  Vera Lukić et al.



Mytragina speciosa and isolated active compounds
are currently under control only in Latvia, Lithuania,
Denmark, Romania, Poland, Sweden, and Italy. There is
a narcotic law in Malaysia, Australia, Myanmar, and
Thailand against kratom, and in New Zealand, Medicines
Amendment Regulations control Mytragina speciosa and
mitragynine. In the USA, the Drug Enforcement Admini-
stration has labelled kratom on its list as a “drug of
concern.”

2.7 Pausinystalia johimbe

Pausinystalia johimbe (from the family Rubiaceae) is
native to tropical West Africa, and widely grows mainly
in Cameroon [59]. Yohimbine, the major alkaloid found in
the bark of this plant, is an α2-adrenoreceptor blocker and
a weak α1-antagonist [60]. It is known to cause increase
in heart rate, blood pressure, and plasma norepinephrine
[60]. Yohimbine induces the increase in plasma NE levels
by the increase in the rate of norepinephrine release from
sympathetic nerves [60].

The use of yohimbe bark and its preparations is pro-
hibited in foods or food supplements in UK, Ireland,
the Netherlands, Belgium, Denmark, Czech Republic,
Canada, Australia, and New Zealand, while in the USA,
it is possible to possess it without license or prescrip-
tion [34].

2.8 Piper methysticum Forst

Kava is a Pacific beverage traditionally used and made
from the stems and roots of Piper methysticum, which
belongs to the pepper family [61–63]. It is known to
decrease anxiety and fatigue; it gives the user the sense
of a sociable attitude, induces sleep, and relieves pain
[51]. Six major kavalactones induce changes, interacting
with GABA activity, inhibiting monoamine oxidase B,
and reuptaking noradrenaline and dopamine [64].

The available data on the analytical determination of
the active components are presented in Table 1.

Kava is legal in many countries; the use of the
plant and the preparations containing kava lactones
are legally regulated. The sale of Piper methysticum is
controlled in France, Switzerland, and the Netherlands.
Pharmaceutical preparations of the plant are prescrip-
tion drugs in Germany. The UK government in 2002

clearly prohibited the sale, importation, and supply
of kava-containing products. The possession of kava
was strictly illegal in Poland until August 2018 [34].

2.9 Psylocibe

“Magic mushrooms” are the most common name for hal-
lucinogenic fungi which contain psychoactive alkaloids
psilocin and psilocybin. These alkaloids are two psyche-
delic substances with effects similar to LSD and mesca-
line [65–68].

The available data on the analytical determination of
the active components are presented in Table 1.

Psylocin and psylocibine are considered as Schedule
I drugs under the United Nations 1971 Convention on
Psychotropic Substances and, therefore, mushroom con-
taining them are not legal in the majority of worldwide
countries. In the Netherlands, mushroom is illegal since
December 2008. Mushroom and its active compounds
are listed in Table 1 of the Republic Presidential Decree
309/90 and following updates in Italy [34].

2.10 Salvia divinorum

Salvia divinorum is an endemic plant in Mexico (the
northeastern Sierra mazateca mountain) [69]. The chew-
ing of fresh leaves or using it to make tea is known for
centuries, while the dried leaves can be smoked or
chewed [34].

Salvinorin A is the main active molecule of Salvia
divinorum, and it is a potent hallucinogenic [70]. Dif-
ferent mechanism of action is shown by comparing it
with classical hallucinogens, such as Δ9-tetrahydrocan-
nabinol, LSD, or ketamine, due to no interaction with
the 5-hydroxytryptamine receptor, N-methyl-D-aspartate
receptor, and cannabinoid receptor [71,72].

The available data on the analytical determination of
the active component are presented in Table 1.

Recently, both Salvia divinorum and salvinorin A
have been brought under control in Belgium, Italy,
Denmark, Lithuania, Latvia, Romania, Sweden, Japan,
and Australia. Salvia divinorum has also been included
recently in the list of “drugs of concern” by United States
Drug Enforcement Administration. Germany, Croatia,
Poland, and Spain put the control on the plant. Salvia
divinorum is under medicines legislation in Finland,
Estonia, and Norway. Without authorization under the
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Natural Health Products Regulation, it is impossible to
sell Salvia in Canada [34].

2.11 Sceletium tortuosum

Sceletium tortuosum (common names: channa, kanna,
sceletium) is a plant that belongs to Mesembryanthe-
mum family. It is grown and used (as quid) in southern
Africa to elevate mood and to relieve thirst and hunger.
On the websites, it is sold as capsules or tablets, and it is
highly recommended for the treatment of depression and
anxiety, to quit smoking, and among students during the
intense study periods [34]. The psychoactivity is attrib-
uted to alkaloids, mainly mesembrine. It was isolated by
Zwicky in 1914, and structurally solved in 1960 [73,74]. In
vitro experiments reveal various pharmacological roles,
such as an effective inhibition of 5-HT reuptake, while
mesembrenone inhibits both phosphodiesterase type 4
isoenzyme and 5-HT reuptake [75,76].

Sceletium tortuosum induces lethargy, strong head-
aches, loss of appetite, and depression [77].

The available data on the analytical determination of
the active components are presented in Table 1.

There are no measures regarding the use of the S.
tortuosum or active compounds isolated from the plant
in the EU as well as in the USA [34].

2.12 Lactuca virosa

Lactuca virosa (wild lettuce) is a plant which can be
found in Europe and in Asia [78]. Various preparations
of Lactuca virosa have been used traditionally as a nat-
ural diuretic, analgesic, antitussive, and sedative [78,79].

The available data on the analytical determination of
the active components are presented in Table 1.

There are no measures regarding the use of the plant
or its active compounds in the EU as well as in the
USA [34].

2.13 Lophophora williamsii

The illicit administration of Lophophora williamsii is less
common, and the licit consumption is associated with the
rituals of religious nature connected to Native American
Church. The pharmacodynamic mechanisms of action

involve the interaction with 5-HT2A-C receptors, inducing
euphoria, hallucinations, depersonalization, and differ-
ent psychoses [80]. However, it was shown to stimulate
blood pressure, sleep, hunger, and thirst [81]. It was
found that it contains different alkaloids, such as mesca-
line, pellotine, anhalonidine, lophophorin, anhalonin,
anhalamin, N-methyl mescaline, N-acetyl mescaline,
anhalidin, O-methylanhalonidine, and anhalin [82].
Mescaline was identified in 1896 and first synthesized
in 1919 [80].

The available data on the analytical determination of
mescaline are presented in Table 1.

Peyote is illegal in Brazil, Italy, France, and other
countries, and it is not under control in Canada if it is
not prepared for ingestion. The peyote use is only per-
mitted when related to the Native American Church in the
US legislation. The peyote cactus is not strictly prohibited
or regulated in Mexico [83].

3 Synthetic molecules

3.1 Synthetic cathinones

Synthetic cathinones (“bath salts” in the USA and “plant
food” or “research chemicals” in Europe) were synthe-
sized in 1920s and were used for the treatment of
patients with symptoms of Parkinson disease, obesity,
and depression [219,220]. Lately, due to their psycho-
active properties (empathy, euphoria, increased alertness,
talkativeness, openness in communication, intensifica-
tion of sensory experiences, reduced appetite, music sen-
sitivity, increased sociability, insomnia, and capacity to
work) [33], they were used as recreational drugs. How-
ever, synthetic cathinones possess somatic (cardiovas-
cular system: hypovolemia, tachycardia, chest pain,
hypertension, ST segment (the period when the myo-
cardium maintains contraction to expel blood from the
ventricles) alterations, myocarditis, cardiac arrest; central
nervous system: insomnia, dizziness, headache, seizures,
confusion altered mental status, tremor, confusion, dizzi-
ness, collapse, dystonia, hyperreflexia, drowsiness, myo-
clonus, paraesthesias; hematologic system: disseminated
intravascular coagulation, anemia, thrombocytopenia;
gastrointestinal and hepatic system: nausea, emesis,
abnormal liver function tests, abdominal pain, liver fail-
ure; pulmonary system: tachypnea, shortness of breath,
respiratory failure and arrest, respiratory acidosis; renal
system: increased renal creatinine, kidney damage, hypo-
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Table 2: Cathinone derivatives

Chemical name Common name Chemical structure

[2-(N-Methylamino)butan-1-onyl]-benzene Buphedrone, α-methylaminobutyrophenone

[2-(N-Ethylamino)-propan-1-onyl]-benzene Ethcathinone, ETCAT, N-ethylcathinone

[2-(N-Methylamino)-propan-1-onyl]-benzene Ephedrone, methcathinone, CAT,
α-methylaminopropiophenone

1-[2-(N-Methylamino)-propan-1-onyl]-4-
fluorobenzene

Flephedrone, 4-FMC, 4-fluoromethcathinone

1-[2-(N-Methylamino)-propan-1-onyl]-4-
methylbenzene

Mephedrone, 4-MMC, 4-methylmethcathinone

[2-(N-Methylamino)-pentan-1-onyl)]-benzene Pentedrone, α-methylaminovalerophenone

1-[2-(N-Methylamino)-propan-1-onyl]-3,4-
dimethylbenzene

3,4-DMMC, 3,4-dimethylmethcathinone

1-[2-(N-Methylamino)-butan-1-onyl]-(3,4-
methylenedioxy)-benzene

Butylone, bk-MBDB, β-keto-
methylbenzodioxolylbutanamine

1-[2-(N-Ethylamino)-propan-1-onyl]-(3,4-
methylenedioxy)-benzene

Ethylone, bk-MDEA, 3,4-methylenedioxy-N-
ethylcathinone

1-[2-(N-Methylamino)-propan-1-onyl]-(3,4-
methylenedioxy)-benzene

Methylone, bk-MDMA, 3,4-methylenedioxy-N-
methylcathinone
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natremia, hyperkalemia, acute renal failure, hyperuri-
cemia; musculoskeletal system: elevated creatinine
kinase, peripheral vasoconstriction, rhabdomyolysis;
ophthalmic system: mydriasis, nystagmus, blurred vision;
ENT: epistaxis, tongue disorder, oral andpharyngeal effects,
bruxism, trismus; consequences of IV use: vein blockage,
local infection, skinerosion,scab, lump,abscess,gangrenous

tissue, blood clots, and large holes at overused injecting
sites) and psychiatric adverse effects (aggression,
anxiety, agitation, anorexia, paranoia, depersonali-
zation, visual and auditory hallucinations, paranoid
delusion, psychosis, depression, suicidal thoughts, anhe-
donia, self-harm, cognitive disorders: long-term cognitive
impairments, place and time, loosening of association,

Table 2: continued

Chemical name Common name Chemical structure

1-[2-(N-Methylamino)-pentan-1-onyl]-
(3,4-methylenedioxy)-benzene Pentylone, bk-MBDP

1-[2-(Pyrrolidin-1-yl)-hexan-1-onyl]-4-
methylbenzene

MPHP, 4-methyl-α-pyrrolidinohexanophenone

1-[2-(Pyrrolidin-1-yl)-pentan-1-onyl]-benzene α-PVP, α-pyrrolidinovalerophenone

1-[2-Pyrrolidin-1-yl)-pentan-1-onyl]-4-
methylbenzene

Pyrovalerone, 4-methyl-α-pyrrolidinovalerophenone

1-[2-(Pyrrolidin-1-yl)-butan-1-onyl]-3,4-
methylenedioxybenzene

MDPBP, 3,4-methylenedioxy-α-
pyrrolidinobutiophenone

1-[2-(Pyrrolidin-1-yl)-propan-1-onyl]-3,4-
methylenedioxybenzene

MDPPP, 3,4-methylenedioxy-α-
pyrrolidinopropiophenone

1-[2-(Pyrrolidin-1-yl)-pentan-1-onyl]-3,4-
methylenedioxybenzene

MDPV, 3,4-methylenedioxypyrovalerone
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disorientation to names, addiction, withdrawal, and toler-
ance). Two pioneering representatives are methcathinone
(CAT; in the 1930s and 1940s it was used in Russia as
an antidepressant) and 4-methylmethcathinone ([4-MMC]
mephedrone). The second most popular drug, methylone
(3,4-methylenedioxy-N-methylcathinone), is usually com-
binedwithmephedrone (first synthesized in 1929), and 3,4-
methylenedioxypyrovalerone (MDPV) is used due to rein-
forcing properties and the activation of brain rewarding
circuitry [220–222]. Some new cathinones are used as sub-
stitute medications in therapy and treatment (e.g., bupro-
pion (trade names Wellbutrin, Zyban) is prescribed as a
smoking-cessation aid and for the treatment of depression)
[223]. Pyrovalerone was intended to be a prescription
drug to treat chronic fatigue, lethargy and obesity but
was withdrawn from the legal market due to abuse in
users [224–226]. 4-MEC, 4-MePPP, α-PVP, butylone
(β-keto-N-methylbenzodioxolylbutanamine), pentedrone
(α-methylamino-valerophenone), pentylone (β-keto-methyl-
benzodioxolylpentanamine), 3-FMC, 4-FMC, naphyrone
(naphthylpyrovalerone), and α-PBP have no currently
acceptedmedical use in treatment [227]. 3-MMC (metaphe-
drone) first appeared in Sweden in 2012 without any ther-
apeutic use [228,229], and it is present on the illegal
market as white powder or crystals, and according to
users, it is less potent and intense than MDMA and
4-MMC [230]. Power et al. synthesized and analyzed
3-MMC using GC-MS, IR, and NMR in 2011 [231]. Christie
et al. used Raman spectrometry to distinguish regio-
isomers, and it is fast and reliable, and, therefore, it can
be used at airports [232].

Based on their chemical structures, cathinone deri-
vatives are divided into four groups. The first group is a
group of N-alkyl compounds, and compounds with a
halogen or an alkyl substituent at any position of the
aromatic ring: ephedrone, ethcathinone, flephedrone,
mephedrone, buphedrone, and pentedrone (Table 2).
The second group consists of compounds with substitu-
ents at any position of the aromatic ring as pentylone,
methylone, and butylone, i.e., methylenedioxy-substi-
tuted compounds (Table 2). The third group is a group
of natural cathinone analogs with N-pyrrolidinyl substi-
tuent. Finally, the fourth group consists of compounds
that include both N-pyrrolidinyl and methylenedioxyl
substituents.

Synthetic cathinones easily cross the blood–brain
barrier (in vitro experiments) [221]. Also, β-keto-amphet-
amines cause CNS stimulating and sympathomimetic
effects characterized by increased blood pressure, heart
rate, mydriasis, and hyperthermia [50,233–240]. They are
inhibitors of monoamine transporters. Their selectivity

for serotonin receptors, norepinephrine transporter, and
dopamine transporters is quite different. The mechanism
of cathinone on neurotransmission consists of triggering
of presynaptic dopamine release and reduction in the
reuptake of dopamine which is similar to the mechanism
of amphetamines. Interestingly, although they are bind-
ing to dopamine and serotonin receptors, the cathinone
shows the highest affinity for norepinephrine receptors. It
was also found that cathinone induces serotonin release
and the inhibition of its reuptake [241].

Cathinones exist in two stereoisomeric forms, and
each of themmay possess different potency [222]. S-Enan-
tiomers are present in khat. However, most ring-substi-
tuted psychoactive substances are present as racemicmix-
tures [242].

Regarding the potency of their inhibition of noradre-
naline, dopamine, and serotonin reuptake and the ability
to release these compounds, Simmler et al. [221] divided
synthetic cathinones into three groups based on in vitro
experiments:
1. Cathinones that act like cocaine and MDMA (cocaine-

MDMA-mixed cathinones). The mode of action of
compounds from this group consists of nonselective
inhibition of monoamine reuptake, which exhibits
better selectivity toward the dopamine transporter
and promotion of serotonin release (similarity to
MDMA). Methylone, mephedrone, ethylone, buty-
lone, and naphyrone are cathinones from this group
[221,233,235–237,239].

2. Cathinones that act like methamphetamine (metham-
phetamine-like cathinones). Their mechanism of
action consists of the preferential reuptake inhibi-
tion of catecholamines and the release of dopamine.
Flephedrone, methcathinone, and clephedrone
(4-chloromethcathinone) are cathinones from this
group [221,234].

3. Synthetic cathinones with pyrovalerone-based struc-
tures (pyrovalerone cathinones). The members of this
group, MDPBP and MDPV, are very selective and
potent inhibitors of the catecholamine reuptake with
no neurotransmitter release effect [221,234].

The strength and the action of cathinone on the cen-
tral nervous system are wide depending on numerous
factors (e.g., age, sex, general health condition, degree
of addiction, taking other psychoactive substances, use
of medication, and use of alcohol) [35,243]. They all elicit
psychomotor excitation, euphoria, feeling of increased
empathy, increased interpersonal openness and self-
assurance, and increased libido [50,220,222,244]. Over-
dose can result in numerous adverse effects (e.g., panic
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and aggression, memory disturbances, hallucinations,
memory loss, depression, and suicidal thoughts) [221].
The combination of measurements (MEA recordings
and neuronal activity) with specific assays (monoamine
reuptake transporter inhibition) shows as the primary
mode of action the inhibition in hDAT and hNET of the
investigated synthetic cathinones (4-MEC, 4-MMC, 3-
MMC, pentedrone, methylone, α-PVP, and MDPV) [245].

Meyer et al. [237] proposed the mechanism of
mephedrone metabolism involving N-demethylation to
basic amines followed by the ketone functionality reduc-
tion, and methyl substituent hydroxylation of the aro-
matic ring (which enables its oxidation to the carboxylic
acid). Uralets et al. [246] investigated the metabolites of
16 synthetic cathinones found in human urine upon
their division into three groups according to their
metabolization:
1. Buphedrone, mephedrone, 4-methylbuphedrone, 4-

methylethcathinone, pentedrone, 3,4-DMMC, flephe-
drone, ethcathinone, and N-ethyl-buphedrone belong
to the first group. Their metabolism follows the pattern
of the synthetic cathinone precursors (i.e., cathinone
and methcathinone). In urine of recreational drug
users, metabolites were detected from the processes
of β-ketone reduction and N-dealkylation (ephedrines
and norephedrines as the main metabolites).

2. The second group includes 3,4-methylenedioxy-substi-
tuted cathinones (butylone, methylone, and ethylone),
which are less prone to the β-keto reduction compared
to the compounds of the first group. One of the expla-
nations canbe the existence of the 3,4-methylenedioxyl
substituent in the aromatic ring. In the analyzed urine,
the parent molecules were found [35].

3. α-Pyrrolidinophenones, such as α-PBP and α-PVP,
which were initially thought not to further metabolize
followed by the reduction of the ketone group or not to
be changed in the urine, are the representatives of the
third group [237,246,247]. Shima et al. [248] showed
that the main α-pyrrolidinophenones metabolic path-
ways depend on the length of the parentmolecule alkyl
chain in humans. PV9 metabolism differs significantly
from α-PVP and α-PBP, and it includes (1) reduction of
the ketone group to the alcohol, (2) oxidation of the
pyrrolidine ring to the pyrrolidone, (3) aliphatic oxida-
tion of the terminal carbon atom to the carboxylate, (4)
hydroxylation at the penultimate carbon atom to the
alcohol, (5) oxidation to the ketone, and (6) combina-
tions of the above steps [248].

Dickson et al. [249] described the preparationmethod
of autopsymaterial for basic drug search: to 1 or 2 mLof the

sample in the liquid state, a phosphate buffer (pH 6), and
the internal standard (ethylmorphine or mepivacaine at
the concentration of 0.5 mg/L) were added. The mixture
was then ultrasonicated for 15 min and centrifuged. They
were subsequently put on the top of the SPE cartridges
(mixed-mode silica-based SPE), which were previously
treated with 3mL deionized water, 3 mL methanol, and
2mL of the same phosphate buffer. Afterward, the car-
tridges were washed with 2 mL deionized water, 2 mL
20% aqueous acetonitrile, and 2mL 0.1 M acetic acid. In
the end, the cartridges were dried for 3 min in a vacuum,
then in 3 mL methanol and 2mL hexane, and again dried
for 10min in a vacuum. The elution afterward was per-
formed with 3 mL dichloromethane/isopropanol/ammo-
niumhydroxide (78:20:2, v/v/v), and after the evaporation
of the solvent under nitrogen and the residue dissolution
in 50 µL acetonitrile, the samples were made ready for the
instrumental analysis. The introduction of QuEChERS
technique into the toxicological analysis is mentioned
in the majority of recent reports on the determination
of synthetic cathinones from postmortem samples. Its
use has several advantages compared to LLE and SPE,
which are prone to the possible contamination of sam-
ples giving rise to the possibilities of inaccurate results
and negative matrix results on analytical instruments.
Usui et al. [250] used QuEChERS for the rapid extrac-
tion of psychoactive substances from human blood,
demonstrating selectivity compared to SPE and simplicity
as LLE. Also, QuEChERS is often cheaper and faster com-
paring to LLE and SPE. In the extraction/partitioning
step, liquid samples are triple diluted with distilled
water, followed by the placement in plastic test tubes
containing 0.5 g of a commercialmixture (sodiumacetate
andmagnesium sulfate), a stainless-steel bead, and 1 mL
acetonitrile with IS. The content of the tube is vigorously
mixed and centrifuged. In the case of acidic analytes, the
acetonitrile layer can be used directly for the instru-
mental analysis. Contrary, for basic compounds, addi-
tional step, dSPE, must be performed, which requires
600 µL of acetonitrile supernatant into a test tube that
contains a commercially obtained mixture of N-propy-
lethylenediamine, then an amount of an end-capped
octadecylsilane, andmagnesium sulfate, for the purifica-
tion. Afterward, the content of the test tube should be
mixed and centrifuged, and the upper layer taken for
the instrumental analysis.

The identification of cathinone derivatives always
begins with the application screening methods that are
not specific. In the case of powders, tablets, and capsules,
colorimetric methods are used [251,253]. The most fre-
quently used test for nitrogen-containing compounds
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(used for the identification of amphetamine) is the Mar-
quis reagent (formaldehyde and sulfuric acid). It does
not give positive reaction for synthetic cathinones derived
from mephedrone. Positive results are obtained with the
compounds containing the methylenedioxyl substituent
(e.g., MDPV). For MDPV, the additional test with the
Chen reagent (copper monosulfide, acetic acid, and
sodium hydroxide) can also be applied, and this test was
considered as good for the ephedrine derivatives, too [252].
Colorimetric tests are good because they are fast and easy
for the application. However, the disadvantage of this test
is that it provides the identificationonly of the single struc-
tural part of a molecule, which is not sufficient for the
identification of a compound. Immunoenzymatic assays
are used for the screening of the biological material.
The most commonly used assay is ELISA [253,254], but it
was shown as nonspecific because of cross reactions (e.g.,
the reaction between MDPV and butylone) [254]. For
synthetic cathinones, primarily GC [251,255–261] and LC
were used coupled with different spectroscopic techni-
ques [262–264]. CI is sometimes applied, but EI is mostly
used [251,255–261]. GC-MSgave a simplemass spectrum in
the positive ionization mode characterized by signals
derived from iminium ions. Zuba [260] proposed a new
method for the identification of synthetic cathinones
using GC-EI-MS. Recently the distinguishing of regioi-
somers becomes possible due to the application of
GC-EI-MS/MS [255]. LC-MS is used in the toxicological
analysis because of its high selectivity and sensitivity
[265–267]. UHPLC coupled with the time-of-flight mass
spectrometry (TOF-MS) [268] and its quadrupole TOF
(QTOF) is an extra technique for the high accuracy ana-
lysis of the active compounds in designer drugs [269]. The

less-useddetection system, forbiological samplesanddrug
products, is LC coupled with ultraviolet-visible (UV-Vis)
spectroscopyusingdiodearrayorPDAdetectionwhich can
be used only for screening [267,270–273]. Screen-printed
graphite electrodes can be used for the detection of two
metabolites of 4-MMC (4-methylcathinone and 4-methyle-
phedrine) and, therefore, is a potential portable analytical
sensor for the fast, cheap, reliable, and accessible detection
and quantification of synthetic cathinone metabolites
mainly for on-site analysis [274]. HPLC-MS/MS in combi-
nation with micro-solid-phase extraction as a prepara-
tion process using membrane-protected molecularly
imprinted polymer (high selectivity) can also be used
for synthetic cathinones monitoring in urine [275].

3.1.1 MDPV

The alkaloid cathinone is the main psychoactive com-
pound of the khat plant (Catha edulis), which has been
used as a stimulant in the Arabian Peninsula and parts of
Africa for hundreds of years. Its psychoactive properties
are known for centuries by inhabitants of East Africa
and north-eastern parts of the Arabian Peninsula
[235,276–278]. It was found that members of this class
stimulate the release of dopamine and norepinephrine
[279] and inhibit dopamine and norepinephrine trans-
porters with a negligible effect on serotonin reuptake
[280,281]. MDPV was first synthesized in 1969 and is
structurally closely related to cathinone [282,283]. Also,
it is a locomotor stimulant, approximately ten times
more potent than cocaine [234,284].

Table 3: Blood–brain barrier permeability for selected psychoactive substances [221]

Pe ratio

Apical to basolateral Basolateral to apical Permeability Active transporta ClogPb

MDMA 6.0 ± 0.56 7.4 ± 2.4 + No 1.85
Mephedrone 14.0 ± 10.4 12.2 ± 6.1 ++ No 1.67
Methylone 6.1 ± 2.8 5.3 ± 1.3 + No 1.39
Methcathinone 5.9 ± 2.8 8.5 ± 3.2 + No 1.19
Amphetamine 6.3 ± 3.7 5.2 ± 1.3 + No 1.74
Methamphetamine 5.4 ± 1.1 6.4 ± 3.0 + No 1.74
MDPV 37.2 ± 11.3 12.0 ± 11.2 ++ Yes 3.80

Data are expressed as mean ± SD (n = 3–9).
Pe ratios shows the blood–brain permeability of the drug in relation to the extracellular marker Lucifer yellow (Pe = 1).
+, high permeability (Pe ratio > 3). ++, very high permeability (Pe ratio > 10).
aP < 0.05 significant difference between apical to basolateral compared with basolateral to apical transport indicating active transport.
bClogP, prediction of partition coefficient (lipophilicity).
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Mephedrone and MDPV show excellent blood–brain
barrier permeability in an in vitro model (Table 3) [221].

Users of this and similar drugs have experienced
euphoria, alertness, talkativeness, sexual arousal, and
positivity 30–45min after oral intake, which lasts 1–3 h.
The side effects are numerous and consist of insomnia,
anxiety, mydriasis, fatigue, agitation, aggression, panic,
combative behavior, disorientation, memory loss, confu-
sion, blackouts, excited delirium, myoclonus, paranoia,
hallucinations, chest pain, increased suicidal intention,
and hypertension. According to medical records, users of
these drugs (including MDPV) are out of control and very
violent [285].

MDPV shares structural similarities and pharmaco-
dynamics with MDMA. Recreational use of more than
one drug is quite common [286]. Frequently, NPS are
often combined with other drugs, particularly ethanol
[287–289]. The MDPV levels in 23 postmortem cases
ranged 10–640 ng/mL in blood [285].

3.2 Phenethylamines

Phenethylamines are compounds which are relatives of
amphetamines and MDMA. Their skeleton is an aromatic
ring with two-carbon side-chains ending with an amine
group (Figure 1) and can undergo two main changes:
(1) substitution of the α-carbon by a methyl produces
amphetamine derivatives (Figure 1) [290] and (2) substi-
tution of the benzene cycle at positions 2 and 5 with
methoxy groups and position 4 with a substituent on
phenethylamine or amphetamine (Figure 1) [290–292].
Tetrahydrobenzodifuranyl and benzodifuranyl (“FLY”)
are analogs of these series [293]. NBOMe series, which
consists of N-benzyl derivatives of the 2 C series (Figure 1)
was recently made [294,295].

It has been demonstrated that ring substitutions
increase the affinity of compounds for 5HT2a receptors
[297]. The substitution of the aromatic ring with a methy-
lenedioxy group at positions 3 and 4 gives MDMA and its
derivatives. They belong to a new pharmacological class –
entactogens.

MDMA switches on central α2A adrenoceptors and
peripheral α1 adrenoceptors inducing vasoconstriction
to restrict heat loss, and β3 adrenoceptors in brown
adipose tissue increasing the generation of heat. The
hyperthermia happening in recreational users of MDMA
can be fatal (the first investigations in 1998 [298]);
furthermore, the literature data indicate that there are
small chances that any pharmaceutical agent will be

effective in reversing the hyperthermia [298]. Although it
was found that hypothermia is the major effect when
10mg kg−1 was injected in mice, hyperthermia followed
by hypothermia is observed when doses of 30mg kg−1

were applied [299]. The reason for that phenomenon
may be the vasodilation of the tail veins [300]. Generally,
MDMA and its derivatives do not cause hallucinations
but promote the feeling of socialization in consumers
[301–303].

Adverse reactions upon the consumption of phe-
nethylamines are feelings of distress and anxiety, emo-
tional disturbances, unpleasant hallucinations, tachy-
cardia and hypertension, frequent agitation, tremors,
and seizures [296]. It has been suggested that alcohol-
induced effects are reduced by MDMA without any
improvement in psychomotor performance. Effects of

Figure 1: Chemical structures of some members of the phenethyl-
amines family of drugs [296]. Reprinted from Drug and Alcohol
Dependence, 154, Gael Le Roux, Chloe Bruneau, Benedicte Lelievre,
Marie Bretaudeau Deguigne, Alain Turcant, Patrick Harry, David
Boels, Recreational phenethylamine poisonings reported to a
French poison control center, 46–53, 2015, with permission from
Elsevier.
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MDMA was prolonged in combination with alcohol [304],
but it reduces hyperthermia induced by MDMA [115].
Cannabis consumption combined with phenethylamines
is frequent and recommended in Internet forums for
avoiding “come down” (e.g., negative symptoms or
aggressive behavior) [305].

Both in vivo and in vitro investigations of selected
“FLY” analogs (2C-T-7-FLY, 2C-E-FLY, 2C-EF-FLY) using
LC-HRMS/MS gave 32 metabolites with the major meta-
bolic steps consisted of hydroxylation and N-acetylation;
phase I was catalyzed by CYP2D6, 3A4, and FMO3 and
N-acetylation using NAT1 and NAT2 [306]. LC-MS/MS
methods for the thermally labile (25-NBOH drugs) were
developed [307]. Pharmacokinetic profile of new amphe-
tamines (1-(2,3,6,7-tetrahydrofuro[2,3-f][1]benzofuran-4-
yl)propan-2-amine and 2-(2,3,6,7-tetrahydrofuro[2,3-f][1]
benzofuran-4-yl)ethanamine)were investigatedusingLC-
MS/MS [308]. Developed ELISA for the detection of 2C-B
and similar hallucinogenic phenethylamines was con-
firmed as a good tool for screening before confirmation
with UHPLC-MS-MS [309].

The fragmentations of NBOMe derivatives were ana-
lyzed using LC-QTOF/MS; the halogen-substituted meth-
oxybenzylethanamine-type derivatives showed a charac-
teristic product ion of a radical cation [14]. Fully validated
LC-tandem mass spectrometry method was developed for
thequantificationof sevenNBOMes (25B-, 25C-, 25D-, 25E-,
25G-, 25H-, and 25I-NBOMe) in blood, with the previous
refrigeration of thewhole blood (up to 90 days) or freezing
of samples for longer storage [310].

3.2.1 25I-NBOMe

25I-NBOMe is a derivative of the 2C-X series of phenethy-
lamines. NBOMe compounds are known as hallucinogens
and stimulants, and potent agonists of the human 5HT2A
receptor [311].

Theoretical studies revealed expected interactions of
partial agonists (hallucinogens like ergolines, phenyli-
sopropylamines, and substituted tryptamines) with the
5HT2A receptor (e.g., with a cluster of aromatic amino
acids in TM5 and TM6, and serines in TM3 and TM5).
The highly conserved Asp1553.32 [312,313]; the serines
Ser1593.36, Ser2395.43, and Ser2425.46 (h5-HT2AR, Ala242 in
r5-HT2AR) [314–316]; and the phenylalanines Phe2435.47,
Phe2445.48, and Phe3406.52 [317–319] are shown as impor-
tant for efficacy and binding of agonists and partial ago-
nists for 5HT2AR (superscripts show the generic num-
bering scheme of amino acids in TMs 1–7 proposed by
Ballesteros and Weinstein [320]).

Dopamine level increased in mice after taking 25I-
NBOMe, and the expression levels of SGK1 and PER2
changed [321].

3.2.2 MDMA

MDMA is the main constituent of the widely used recrea-
tional drug ecstasy [322]. It was first made in the lab in
1912 by Merck KGaA (Darmstadt, Germany) in the project
aimed the identification of new hemostatic (blood-clot-
ting) agents [322]. Its first major toxicological study in
animals was performed in the 1950s at the University of
Michigan in a classified USA Army contract [322]. In
1973, the results were declassified and made public by
Hardman et al. [323]. In 1978, Alexander Shulgin together
with David Nichols from Purdue University published the
first report on the effects of MDMA in humans [324].

The positive effects of MDMA consumption include
arousal, euphoria, increased sociability, enhanced mood,
andheightenedperceptions [322]. Adverse effects consist of
headache,nausea,bruxism, tachycardia, and trismus [322].
The acute effects of MDMA are ascribed to increase the
release and inhibit the reuptake of norepinephrine and ser-
otonin with the possibility of the release of the neuropep-
tide oxytocin [322].

MDMA is a Schedule I compound by the Drug
Enforcement Agency, but MDMA-assisted psychotherapy
for patients with chronic, treatment-resistant posttrau-
matic stressdisorder is currently under investigation [322].

3.3 Cannabinoids

Based on the origin, cannabinoids can be classified into
(1) phytocannabinoids, (2) endocannabinoids, and (3)
synthetic cannabinoids [325].

In the 1980s, cannabinoid receptors were found and
labeled with CB and numbered according to their dis-
covery by a subscript (CB1 and CB2). These receptors differ
based on their predicted amino acid sequence, tissue dis-
tribution, and signaling mechanisms [326].

HPLC-UV approach was shown as the gold standard
for the quantitation of the synthetic cannabinoids with
highly conjugated chromophores [327]. Synthetic and
natural cannabinoids were found in oral fluid using
solid-phase microextraction coupled to gas chromato-
graphy/mass spectrometry [328].

Synthetic cannabinoids can be grouped based on
their structures by the National Forensic Services:
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naphthylindoles, phenylacetylindoles, benzoylindoles,
cyclopropylindoles, aminocarbonylindazoles, adaman-
tylindoles, adamantylindazoles, quinolinylindoles, CP-
47,497 homologs, and cyclopropylthiazoles [1,329–331]
(Figure 2).

The first synthetic cannabinoid was detected at the
end of 2008, and since then, more than 130 synthetic
cannabinoids have been registered at the EMCDDA [332].

3.3.1 Marijuana (cannabis)

Phytocannabinoids are present in significant quantities in
plant cannabis [333]. The medicinal use of marijuana, a
complex plant, for its analgesic, anticonvulsant, and anti-
inflammatory properties is known [334]. The first medical
data on this plant (the relief of cramps and pain) are
coming from China around 5,000 years ago [335]. Few
phytocannabinoids, especially CBD, has a beneficial effect
in numerous pathological conditions (inflammation,

cancer, addiction, and epilepsy) [336–339]. The various
pharmacological properties of marijuana have inspired
drug discovery programs intending to produce new can-
nabinoids with therapeutic potential.

However, a number of epidemiological research shows
the connection between dose-related marijuana use and
an increased risk of the development of symptoms of
depression and anxiety [340]. Studies showed that the
negative effect of cannabis is more pronounced in indivi-
duals with predispositions for psychosis and personality
and psychosis susceptibility genes [340].

3.3.2 Synthetic cannabinoids

Synthetic cannabinoids are mimetic of Δ9-tetrahydrocan-
nabinol, the primary active substance in cannabis. Other
cannabinoids present in cannabis are CBD and CBN
[333,341]. They are full agonists of the CB1 receptor, a
GPCR [342]. Several other receptors, ranging from other

Figure 2: Sample structures for synthetic cannabinoids: (a) JWH-018, a simple naphthoylindole; (b) JWH-167, a simple phenylacetylindole;
(c) AM-1241, a chemical from benzoylindole family; (d) APICA (2NE1, SDB-001), a drug from adamantylindole group; (e) APINACA (AKB48), a
drug from adamantylindazoles family; (f) general structure for quinolinylindole.
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GPCRs to ion channel and nuclear receptors, have
been reported to have the interaction with cannabi-
noids [326,343]. The full-length CB1R dominates in the

skeletal muscle and brain, whereas the CB1Rb shows
high expression level in pancreatic islet cells and the liver
[344] (Figure 3a). Inhumanbody, two isoformsof theCB2R

Figure 3: (a) The main localization sites and related functions of the CB1R in the human body; (b) subcellular localization of the CB1R [335].

Overview of the major classes of NPS  75



are as follows: the first is mainly expressed in testis and at
lower levels in brain reward regions,whereas the second is
predominantly expressed in the spleen and at the lower
levels in the brain [345] (Figure 3a).

Similarly to other GPCRs, the CB1R is mainly loca-
lized in cell membrane. However, the predominant loca-
lization of CB1Rs is inside the cell, including transfected
nonneuronal cells, cultured hippocampal neurons, and
undifferentiated neuronal cells [346]. Intracellular CB1Rs
are in acid-filled endo/lysosomes [347] (Figure 3b). Also,
there is another subpopulation of CB1Rs expressed in
mitochondria.

Synthetic cannabinoids have similar effects with the
natural cannabinoids, including alteration in perception
and mood, increased pulse, and xerostomia [348].

In vitro phase I of PX-1 (5F-APP-PICA) showed ten
identified metabolites, which enable medical profes-
sionals and analytical scientists to detect PX-1 and
make a prediction of the metabolites of synthetic can-
nabinoids with the similar structural pattern [349].
Synthetic cannabinoids with an alkene functional
group at the alkyl side chain, chosen for in vitro and
in vivo investigations (MDMB-4en-PINACA, methyl (S)-
3,3-dimethyl-2-(1-(pent-4-en-1-yl)-1H-indazole-3-carbox-
amido)butanoate) show a total of 32 metabolites (11 in
hepatocyte samples, 31 in human liver microsomes, 1 in
blood and 2 in urine), and the main metabolic pathway
happens through the terminal alkene group of the pen-
tenyl side chain consisting of dihydrodiol formation (via
epoxidation probably) [350]. It was found that the major
hydrolysis metabolites of ADB-CHMICA, 5F-AB-PINACA,
ADB-FUBICA, ADB-CHMINACA, and their ethylester and
methyl-derivatives do not induce any CB1 activation at con-
centrations lower than 1 μM [351]. On the contrary,metabo-
lites of 5F-ADB-PINACA, AB-CHMINACA, and ADB-FUBIN-
ACA show activity, but it is significantly reduced compared
to the parent compounds (EC50> 100 nM) [351]. 5F-CUMYL-
P7AICAmetabolites were identified in three urine samples,
where the major biotransformation steps in humans were
oxidative defluorination followed by carboxylation and
monohydroxylation followed by sulfation and glucuroni-
dation [264]. Metabolism of the new synthetic cannabinoid
7′N-5F-ADB in human, rat, and pooled human S9 was stu-
died by means of hyphenated high-resolution mass spec-
trometry [352]. UHPLC-QTOF-MS was used for screening,
quantification, and confirmation of synthetic cannabinoid
(AB-FUBINACA, AB-CHMINACA, AB-PINACA, AM-2201,
5F-AKB48, AKB48, JWH-018, BB-22, JWH-081, JWH-073,
JWH-122, JWH-203, JWH-250, 5F-PB-22, RCS-4, PB-22,
THJ-2201, and UR-144) metabolites in urine [353]. Incu-
bation of APP-CHMINACA with human liver macro-

somes, followed by analysis with HRMS gave 12 meta-
bolites with the predominant biotransformation in the
form of hydrolysis of the distal amide group and hydro-
xylation of the cyclohexylmethyl substituent [354]. Ana-
lysis of pHLM and urine samples revealed that in case of
5F-AB-P7AICA the main metabolites were generated by
amide hydrolysis, hydroxylation, and hydrolytic defluor-
ination [355].

Huffman and colleagues at Clemson University exten-
sively explored SARs within the AAI class of SCs, resulting
in highly simplified analogs exemplified by JWH-018,
which shows high affinity for CB1 receptor (Ki = 9.0 nM)
[356–359]. Auwarter et al. identified JWH-018 and the
n-octyl homolog of CP 47497 as the psychoactive compo-
nents of “Spice” [360].

3.3.2.1 JWHs

The first “JWH” compounds were made by Huffman et al.
[357] researching the effects of JWHs on CB1 and CB2
receptors. They reported higher affinities than those
reported for cannabis [359]. JWH-018 (1-alkyl-3-(1-
naphthoyl) indole) was detected for the first time in
2008 in “Spice” products [360]. JWH-018 metabolite
exerts higher toxicity compared to the parent drug,
suggesting a non-CB1 receptor-mediated toxicological
mechanism [361]. The first generation of JWHs consists
of JWH-073, JWH-018, JWH-250, and CP 47,497. The
synthesis of these drugs is straightforward, so it has
been continued with second generation (RCS-4, JWH-
122, and AM2201) [362].

Various JWHs were detected in seized materials
[363–367], such as oral fluid [368], hair [369], serum, or
whole blood [370–374]. In vivo studies consisted of the
investigation of phases I and IImetabolites in the rat urine
after exposure and in human urine postadministration
[375–383]. It was shown that hydroxylation and carboxy-
lation are typical phase I biotransformations prior to con-
jugation [384]. JWH-018 is metabolized through phases I
and II enzymes [385]. There are indications that CYP1A2
and CYP2C9 catalyze JWH-018 oxidation [386,387], while
hepatic UGT1A9, UGT1A1, and UGT2B7 and extra-hepatic
UGT1A10 are the enzymes that perform the catalysis of the
conjugation of glucuronic acid to phase I JWH-018 meta-
bolites [386]. JWH-018 hydroxylated metabolites bind to
CB1withmore “love” than Δ9 THC [388,389], and JWH-018
phase I metabolites also like CB2 receptor [389].

Investigationsof toxicologicalprofiles of synthetic can-
nabinoids have shown cannabinoid receptor independent
and dependent cytotoxic effects on cell lines [390–392].
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Koller et al. [391] found that JWH-018 induces damage to
the cell membranes of buccal (TR146)- and breast (MCF-7)-
derived cells at concentrations of ≥75–100 µM. JWH-018 N-
(3-hydroxypentyl) phase I metabolite is toxic for HEK293T
and SH-SY5Y cell lines contrary to its parent compound.
JWH-018 metabolite causes mitochondrial damage and
membrane disruption on both cell lines [361].

Different spectrometric techniques were used for the
identification: GC-MS [236,364,377], GC-MS/MS [382], LC-
MS [364], and LC-MS/MS [371,372,374–380,382,383,385].
Shanks et al. (2012) [373] developed the method for the
analysis of the concentrations of JWH-018 and JWH-
073 in human blood using UPLC-MS-MS. Concentra-
tions ranged from 0.1 to 199 ng/mL for JWH-018, and
0.1–68.3 ng/mL for JWH-073 in postmortem forensic cases.

3.4 Arylcyclohexylamines

3.4.1 Ketamine and norketamine

Ketamine is a medical anesthetic agent used in veterinary
medicine and also in humans [393,394] and pediatric
practice [395]. Arylcyclo-alkylamine skeleton produces
hallucinogenic effects [396].

Ketamine biotransformation mechanism of ketamine
was established by Chang and Glazko (1972) [397]. In
phase I, the ketamine oxidation process occurred (het-
eroatom demethylation), giving norketamine, followed
by a hydroxylation process (here the product is HNK);
and in phase II the biotransformation reaction, it under-
goes glucuronidation and conjugation with glutathione
and amino acid.

For the detection of ketamine, GC/NPD [398], GC/MS
(first derivatized with heptafluorobutyric anhydride) [399],
and GC/CIMS [400] were used. The same derivatization
procedure was used for HS-SPME-GC/MS [401], LC/UV
[402,403], and LC/MS single mass, tandem mass [404].

3.4.2 BZP

Stimulant properties of BZP, a piperazine derivative, are
similar to those produced by amphetamine but less
potent [405]. It is listed as Schedule I drug in the USA
and Schedule III in Canada but banned in all Australian
states, New Zealand, and Japan [406].

It has many adverse effects, such as palpitations,
agitation, anxiety, confusion, dizziness, tremor, head-
ache, urine retention, insomnia, and vomiting [407].

3.5 Tryptamines

Numerous biologically active derivatives contain the
tryptamine nucleus as a building block, such as neuro-
transmitter serotonin or antimigraine drugs of the tryptan
series.N,N-Dialkylation on nitrogen side chain may result
in derivativeswith psychoactive and hallucinogenic prop-
erties acting primarily as agonists of the 5-HT2A receptor
[408]. The story of synthetic tryptamines started with LSD
in mid-1900s, with AMT 5-MeO-DMT (5-methoxy-N,N-
dimethyltryptamine) and 5-MeO-DIPT as the next-genera-
tion designer drugs to replace LSD [408].

Key properties in the interpretation of mass spectra
of this class of illegal drugs include the formation of
iminium ion CnH2n+2N

+ in substituted CH2]N+(R1R2)
species. Soft-ionization techniques, such as electrospray,
are used to give strong [3-vinylindole]+-type species,
reflecting the extent of the substitution on the indole
ring [409].

Figure 4 represents a generalized tryptamine struc-
ture. Psychoactivity is highly affected by the substitution
in positions 4 and 5 of the indole ring and the alkylation
of the side-chain nitrogen and the side-chain carbon
[410]. Interestingly, numerous naturally occurring psy-
choactive tryptamines are N,N-dimethylated derivatives:
DMT, psilocybin (found in many mushroom species
[411]), psilocin (4-OH-DMT), and 5-methoxy- and 5-
hydroxy-DMT (bufotenin).

The pharmacology of tryptamine derivatives is com-
plex, but it seems that 5-HT1A & 2A receptor subtypes are
involved [412–414]. It was found that DMT also serves as
an agonist at the sigma-1 receptor [415]. Szara showed
that DMT induces spatial distortions, visual hallucina-
tions, speech disturbance, and euphoria when it is used
intramuscularly in humans [416]. Numerous N,N-dialky-
lated tryptamines were discovered to be substrates at the
vesicle monoamine transporter and the plasma mem-
brane serotonin transporter [417].

LSD was synthesized in 1938 by Hofmann, and hal-
lucinogenic properties were determined a few years later
[418,419]. AMT was developed in the Soviet Union as an
antidepressant under the name of Indopan in the 1960s.
Although today it does not have any therapeutic applic-
ability, its popularity as a “designer drug” increased in
1990s [420]. Tryptamine derivatives can be found as a
free base or salt, tablets, or powders [421,422].

An increased impulsiveness and abnormal behaviors
occurred after taking tryptamine. The study on rats was
performed regarding the effect on body temperature.
During the period of the administration, they showed
hypothermia, followed by hyperthermia [408].
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DMT metabolic pathway in humans is sketched in
Figure 5. It is inactivated by MAO enzymes in gut and
liver.

The analysis of urine from LSD shows five meta-
bolites: 2-oxo-LSD, 2-oxo-3-hydroxy-LSD, N-desmethyl-
LSD, 13- and 14-hydroxy-LSD glucuronides [423–425].
It is suggested that 2-oxo-3-hydroxy-LSD could be made
through dehydrogenation of the 2,3-dihydroxy-LSD inter-
mediate, which is probably formed from LSD 2,3-epoxide
[408]. Due to the fact that urine samples contain the
parent compounds in small quantities or may not even
be excreted, it is better to investigate the metabolites of
NPS using pooled human liver S9 fraction. Such analysis
of nine LSD derivatives (1-acetyl-LSD (ALD-52), 1-butyryl-
LSD (1B-LSD), 1-propionyl-LSD (1P-LSD), N6-ethyl-nor-
LSD (ETH-LAD), N6-allyl-nor-LSD (AL-LAD), 1-propionyl-
N6-ethyl-nor-LSD (1P-ETH-LAD), N-ethyl-N-cyclopropyl
lysergamide (ECPLA), lysergic acid morpholide (LSM-
775), and (2′S, 4′S)-lysergic acid 2,4-dimethylazetidide
(LSZ)) enables the identification of monooxygenase
enzymes involved in the initial metabolic steps [426].
It was found that 1-acyl-substitution reduces the affinity of

LSD for the majority of monoamine receptors (including
5-HT2A sites) [427]. 1P-LSD, ALD-52, and 1B-LSD haveweak
efficiency as antagonists in Ca2+ mobilization assays [427].

3.6 New synthetic opioids

NSO can be divided into two groups: (1) pharmaceutical
(e.g., sufentanyl, fentanyl, remifentanyl, carfentanyl, and
alfentanyl) and (2) nonpharmaceutical fentanyls (e.g.,
ocfentanyl and butylfentanyl). A new generation of
NSOs, with structures different from fentanyls, appeared
on the drug market in 2010: MT-45 (piperazine analogue),
AH-7921 (benzamide analogue), isotonitazene, and U-
47,700 (isomer of AH-7921) (Figure 6). They are character-
ized by different characteristics, such as availability on the
Internet, purity, low price, legality, and lack of detection
in laboratory tests [419]. NSOs can be found in tablet,
powder, or liquid forms [428].

Their number is increasing. The synthetic opioid U-
47700, μ-opioid receptor agonist, emerged on the illicit
drug market, and it is sold as a “research chemical” with
a potency of approximately 7.5 times that of morphine
[418]. Its structure is similar to the synthetic opioid
AH-7921.

Isotonitazene (N,N-diethyl-2-[5-nitro-2-({4-[(propan-
2-yl)oxy]phenyl}methyl)-1H-benzimidazol-1-yl]ethan-1-
amine) was identified recently using GC-MS and LC-
QTOF-MS (m/z = 411.2398) with the confirmation of the
region – isomer with 1H and 13C NMR [429]. Assessment of
the in vitro biological activity at the μ-opioid receptor
showed its high potency (EC50 = 11.1 nM) and efficacy
(Emax 180% of hydromorphone) [429]. In vivo experiments
show four metabolites identified using LC-QTOF-MS: N-
and O-dealkylation products (N-desethyl-isotonitazene
and N-desethyl-O-desalkyl-isotonitazene) were deter-
mined as urinary biomarkers, while 5-amino-isotonita-
zene was found in the majority of the investigated
blood samples [430].

Potential use of NSO causes side effects, such as
sedation, miosis, hypothermia, respiratory depression,
inhibition of gastrointestinal propulsion, death (over-
dose) [431]. Sometimes reagents used in the synthesis
can cause symptoms like discoloration of the nails, loss
and depigmentation of hair, extensive folliculitis and der-
matitis, bilateral hearing loss, elevated liver enzymes,
and eye irritation followed by bilateral secondary catar-
acts requiring surgery, after the administration of MT-45
[432,433].

Figure 4: Generalized structure of a tryptamine derivative [409].
Reprinted from TrAC Trends in Analytical Chemistry, 29, Claudia P.
B. Martins, Sally Freeman, John F. Alder, Torsten Passie, Simon D.
Brandt, Profiling psychoactive tryptamine-drug synthesis by
focusing on detection using mass spectrometry, 285–296, 2010,
with permission from Elsevier.
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As a pharmaceutical medicine, fentanyl is used in
anaesthesia and for the management of severe pain. In
anaesthesia, sufentanyl, remifentanil, and alfentanil can

also be used. On the other hand, carfentanyl (at the
moment the most powerful synthetic opioid-10,000 times
more potent than fentanyl) is used in veterinary medicine

Figure 5: (a) Minor (blue arrows) and major (red arrows) metabolic pathways for DMT in humans; (b) metabolic pathways for psilocybin in
humans [408].
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(trade nameWildnil®). However, it wasmost likely used to
free hostages in Moscow by the government [434]. Phar-
maceutical forms include lozenges, transdermal patch,
sublingual tablets, and solutions for the infusion [435].

Up to 17 opioid receptors have been reported, but
three classes are the most important in humans: μ, κ,
and δ [436]. Fentanyl, made in 1959 by Jansen, is a
complete μ receptor agonist. Metabolism of this drug,
mediated by the CYP450 isoenzyme system, makes in
active norfentanyl [437]. Carfentanyl and its metabolites
can be detected in urine (LOD is 0.20 ng/mL for carfen-
tanyl and LOD for carfentanyl metabolite is 0.01 ng/mL)
[438]. Carfentanyl amides were found as potent com-
pounds with less hazardous side effects associated with
traditional opioids [439]. MT-45 acts on opioid (δ and κ)
and nonopioid receptors. Its mechanism is not well inves-
tigated yet, and it can be responsible for special reported
effects (e.g., profound loss of consciousness and ototoxi-
city) [440]. The psychiatric effects of opioids are related
to the localization of receptors in the central nervous
system [441]. κ receptors contribute to dysphoria, and
they are present in the brain stem, spinal cord, and in

the limbic and other diencephalic areas. Euphoria is con-
nected to μ-opioid agonist effect in the medial thalamus
and brain stem. The duration varies depending on the
drug and its half-life (1–8 h). The psychiatric effects
from opioid abuse are similar to those of heroin: a sense
of well-being, relaxation, and euphoria, followed by a
peaceful, dream-like state [428]. Naloxone is a short-
acting semisynthetic competitive opioid receptor antago-
nist with the highest activity for the μ receptor and can be
administered by intramuscular, intravenous, subcuta-
neous, and intranasal routes [428].

Routine urine drug tests cannot detect them yet. They
show extreme potency, and very small quantities are
enough to obtain a result [428]. The fragmentation pattern
of frequently used NSO (fentanyl derivatives, AH series
opioids, 4U series opioids, 4W series opioids, and MT-
45) was investigated with the aim to be applied to a non-
targeted screening workflow [442]. Metabolic fate of three
NSOs (trans-4-bromo-N-[2-(dimethylamino)cyclohexyl]-
N-methyl-benzamide (U-47931E), trans-3,4-dichloro-N-
[2-(dimethylamino)cyclohexyl]-N-methyl-benzenacetamide
(U-51754), and 2-methoxy-N-phenyl-N-[1-(2-phenylethyl)
piperidin-4-yl]acetamide (methoxyacetylfentanyl)) was
found using high-resolution mass spectrometry after
pooled human S9 fraction incubation and in the urine of
rats after oral intake, and the following main reactions
occurred: (1) demethylation of the amine moiety for U-
51754 and U-47931E, (2) N-hydroxylation of the hexyl
ring, (3) combinations of O-demethylation, N-dealkyla-
tion, and hydroxylation at the alkyl part for methoxyace-
tylfentanyl [443]. Miniaturized ion mobility spectrometer
with a dual-compression tristate ion shutter for on-site
rapid screening of fentanyl drug mixtures was used [444].
Raman spectroscopy can also be used to distinguish fenta-
nyls from morphines [445]. Analytical toxicology and tox-
icokinetic studies of the new synthetic opioids cyclopenta-
noyl-fentanyl (CP-F) and tetrahydrofuranyl-fentanyl (THF-
F) revealed 12 phase I metabolites of CP-F and 13 of THF-F,
among them9metabolites were described for the first time,
with the N-dealkylations, hydroxylations, and dihydroxy-
lations as themainmetabolic reactions usingLC-HRMS/MS
[446]. Three fluorofentanyl isomers with the incubation
with pooled human hepatocytes give as the major metabo-
lite N-dealkylation product norfluorofentanyl, with 14 dif-
ferent metabolites for each fluorofentanyl isomer [447].

3.6.1 AH-7921

AH-7921 was reported first by EMCDDA in 2012. It was
detected in synthetic cannabinoid products as well [1].

Figure 6: Structures and potencies of NSOs [428]
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Table 4: Chemical structures and names of designer benzodiazepines [455]

Chemical structure Names

Cloniprazepam (5-(2-chlorophenyl)-1-(cyclopropylmethyl)-7-nitro-1,3-dihydro-2H-benzo[e][1,4]
diazepin-2-one

Desmethylflunitrazepam or norflunitrazepam or Ro-4435 or fonazepam (5-(2-fluorophenyl)-7-nitro-
1,3-dihydro-2H-1,4-benzodiazepin-2-one)

Diclazepam or 2-Chlorodiazepam (7-chloro-5-(2-chlorophenyl)-1-methyl-1,3-dihydro-2H-1,4-
benzodiazepin-2-one

4′-Chlorodiazepam or Ro5-4864 (7-chloro-5-(4-chlorophenyl)-1-methyl-3H-1,4-benzodiazepin-2-one

Flubromazepam (7-bromo-5-(2-fluorophenyl)-1,3-dihydro-2H-1,4-benzodiazepin-2-one

Meclonazepam or (S)-3-methylclonazepam (3S)-5-(2-chlorophenyl)-3-methyl-7-nitro-1,3-dihydro-
2H-1,4-benzodiazepin-2-one
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Table 4: continued

Chemical structure Names

Nifoxipam or 3-hydroxydesmethylflunitrazepam (5-(2-fluorophenyl)-3-hydroxy-7-nitro-2,3-dihydro-
1H-1,4-benzodiazepin-2-one

Nitemazepam (3-hydroxy-1-methyl-7-nitro-5-phenyl-2,3-dihydro-1H-1,4-benzodiazepin-2-one

Phenazepam (7-bromo-5-(2-chlorophenyl)-1,3-dihydro-2H-1,4-benzodiazepin-2-one)

3-Hydroxyphenazepam (7-bromo-5-(2-chlorophenyl)-3-hydroxy-1,3-dihydro-2H-1,4-benzodiazepin-
2-one

Adinazolam or Deracyn® or Adinazolamum (1-(8-chloro-6-phenyl-4H-[1,2,4]triazolo[4,3-a][1,4]
benzodiazepine-1-yl)-N,N-dimethylmethanamine

Bromazolam (8-bromo-1-methyl-6-phenyl-4H-[1,2,4]triazolo[4,3-a][1,4]benzodiazepine
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Table 4: continued

Chemical structure Names

Clonazolam or Clonitrazolam (6-(2-chlorophenyl)-1-methyl-8-nitro-4H-[1,2,4]triazolo[4,3-a][1,4]
benzodiazepine

Flualprazolam (8-chloro-6-(2-fluorophenyl)-1-methyl-4H-benzo[f][1,2,4]triazolo[4,3-a][1,4]
diazepine

Flubromazolam (8-bromo-6-(2-fluorophenyl)-1-methyl-4H-[1,2,4]triazolo[4,3-a][1,4]benzodiazepine

Flunitrazolam (6-(2-fluorophenyl)-1-methyl-8-nitro-4H-[1,2,4]triazolo[4,3-a][1,4] benzodiazepine

Nitrazolam or NitrazolaM (1-methyl-8-nitro-6-phenyl-4H-[1,2,4]triazolo[4,3-a][1,4] benzodiazepine

Pyrazolam (8-bromo-1-methyl-6-(pyridine-2-yl)-4H-[1,2,4]triazolo[4,3-a][1,4] benzodiazepine
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Table 4: continued

Chemical structure Names

Zapizolam (8-chloro-6-(2-chlorophenyl)-4H-pyrido[2,3-f][1,2,4]triazolo [4,3-a][1,4] diazepine

Etizolam (4-(2-chlorophenyl)-2-ethyl-9-methyl-6H-thieno[3,2-f][1,2,4]triazolo[4,3-a][1,4]diazepine

Deschloroetizolam (4-phenyl-2-ethyl-9-methyl-6H-thieno[3,2-f][1,2,4]triazolo[4,3-a][1,4]diazepine

Metizolam or desmethyletizolam (4-(2-chlorophenyl)-2-ethyl-6H-thieno[3,2-f][1,2,4]triazolo[4,3-a]
[1,4]diazepine

Fluclotizolam (2-chloro-4-(2-fluorophenyl)-9-methyl-6H-thieno[3,3-f][1,2,4]triazoleo[4,3-a]
diazepine

*Phenazepam is used as a prescription medicine in Russian Federation, Estonia, Latvia, Lithuania and Belarus [456], and etizolam is used
as a prescription medicine in Japan, India and Italy [457].
Reprinted from NeuroToxicology, 73, Jolanta B. Zawilska, Jakub Wojcieszak, An expanding world of new psychoactive substances-designer
benzodiazepines, 8–16, 2019, with permission from Elsevier.
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AH-7921 (3,4-dichloro-N-[(1-dimethylamino)cyclohex-
ylmethyl]benzamide) is a µ-opioid receptor agonist devel-
oped in1974byAllenandHanburysLtd. [448]andpatented
2 years later as a potential analgesic agent [449]. The
reported analgesic activity in mice is equal or slightly
higher than that inmorphine [450,451]. Studies on animals
show that AH-7921 is approximately equipotent to mor-
phine regarding antinociception, respiratory depression,
sedation, Straub tail, decrease in pupil diameter, decrease
inbody temperature, and inhibitionofgutpropulsion [452].

AH-7921 has never been sold as a medicine due to its
addictive properties [453], and it has no other industrial use.

Studies show that AH-7921 acts as an agonist at the κ
and μ opioid receptors with a Ki of 50 and 10 nM, respec-
tively [454].

3.7 Designer benzodiazepines

The DBZD include pharmaceutical drug candidates never
been approved for medical use (deschloroetizolam, clona-
zolam, flubromazepam, diclazepam, pyrazolam, and mec-
lonazepam)derivatives obtainedby a simplemodification of
the registered drugs (flubromazolam), and somemetabolites

Table 5: Metabolism of designer benzodiazepines [463]

Compound Metabolites Reference

Adinazolam In vitro (HLM): N-desmethyladinazolam, N,N-didesmethyladinazolam [464]
Diclazepam In vitro (HLM): monohydroxylation → delorazepam, desmethylation →

lormetazepam
[465]

Human urine: delorazepam, lorazepam, lormetazepam [465,466]
Human serum: delorazepam

Etizolam In vitro (HLM): three monohydroxylated metabolites, keto-metabolite, etizolam
glucuronide

[465,467]

Post-mortem blood: α-hydroxyetizolam, 8-hydroxyetizolam [468]
Deschloroetizolam In vitro (HLM): hydroxydeschloroetizolam, dihydroxydeschloroetizolam,

deschloroetizolam glucuronide
[465,467]

Flubromazolam In vitro (HLM, human hepatocytes): 4-hydroxyflubromazolam,
α-hydroxyflubromazolam, dihydroxyflubromazolam, flubromazolam glucuronide

[465,467,469,470]

Human urine: α-hydroxyflubromazolam, 4-hydroxyflubromazolam,
α-hydroxyflubromazolam glucuronide, α,4-dihydroxyflubromazolam,
flubromazolam glucuronide

[469–472]

Metizolam In vitro (HLM): 2-hydroxymetizolam, N-hydroxymetizolam, metizolam glucuronide [464,467,473]
Human urine: 2-hydroxymetizolam, N-hydroxymetizolam, 2-hydroxymetizolam
glucuronide

[473]

Norflurazepam In vitro (HLM): hydroxynorflurazepam, dihydroxynorflurazepam [474]
Phenazepam Human urine: 3-hydroxyphenazepam, 5-bromo-(2-chlorophenyl)-2-

aminobenzophenone (ABPH), 6-bromo-(2-chlorophenyl) quinazoline-2-one (QNZ)
[456]

Pyrazolam Human urine: pyrazolam glucuronide [472]
Clonazolam In vitro (HLM): aminoclonazolam, desmethylclonazolam, hydroxyclonazolam [465]

Human urine: 7-aminoclonazolam, 7-acetaminoclonazolam, hydroxyclonazolam,
7-aminoclonazolam glucuronide, 7-acetaminoclonazolam glucuronide,
hydroxyclonazolam glucuronide

[475]

Cloniprazepam In vitro (HLM): 7-aminocloniprazepam, hydroxycloniprazepam,
dihydroxycloniprazepam, 3-ketocloniprazepam, clonazepam,
7-aminoclonazepam, hydroxyclonazepam, 3-hydroxy-7-aminoclonazepam,
hydroxycloniprazepam glucuronide

[464,476]

Flunitrazolam In vitro (HLM): hydroxyflunitrazolam, dihydroxyflunitrazolam, aminoflunitrazolam,
flunitrazolam glucuronide

[467,474]

Human urine: desnitroflunitrazolam, 7-aminoflunitrazolam,
7-acetamidoflunitrazolam, hydroxyflunitrazolam

[477]

Fonazepam
(norflunitrazepam)

In vitro (HLM): 7-aminofonazepam (7-aminonorflunitrazepam),
3-hydroxyfonazepam (3-hydroxynorflunitrazepam; nifoxipam)

[464]

Meclonazepam In vitro (HLM): aminomeclonazepam, hydroxymeclonazepam [465]
Human urine: 7-aminomeclonazepam, 7-acetaminomeclonazepam [475,478]

Nifoxipam In vitro (HLM): 7-aminonifoxipam, denitro-nifoxipam, nifoxipam glucuronide [465,467]
Nitrazolam In vitro (HLM): 8-aminonitrazolam, 4-hydroxynitrazolam/α-hydroxynitrazolam [464]
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Table 6: Structures of the global minima and their energies

Name and structure of the global minimum of the compound The energy of the global minimum, kJ/mol

Mephedrone 276.15

AH-7921 153.56

25B-NBOMe 244.92

25C-NBOMe 252.04
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Table 6: continued

Name and structure of the global minimum of the compound The energy of the global minimum, kJ/mol

25I-NBOMe 244.16

BZP 307.50

AM-2201 345.15

MDPV 265.43
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of registered benzodiazepines (desmethylflunitrazepamand
3-hydroxydesmethylflunitrazepam) [455] (Table 4).

They appeared in early 1960s, and it was found that
they act as positive allosteric modulators of GABA-A recep-
tors, with the binding site at the α/γ subunit interface [455].
In medicine, DBZD are widely applied in the therapy of
neurological and psychiatric disorders (e.g., panic attacks,
anxiety, muscle spasms, insomnia, epilepsy, and alcohol

withdrawal), and as a premedication prior to surgery and
intraoperative medications [455].

The first recreationally used benzodiazepinewas phe-
nazepam in 2007, which was followed by etizolam in 2011
[457]. Phenazepam was created in the Soviet Union in the
1970s for the treatment of anxiety and alcohol withdrawal
[456]. Etizolamwasmade initially in Japan (Depas) in 1984
as an anxiolytic medicine [455].

Table 6: continued

Name and structure of the global minimum of the compound The energy of the global minimum, kJ/mol

Methylone 243.09

JWH-018 340.96

2C-B 143.71
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They are sold as tablets, capsules, pills, pellets, blot-
ters, powders, and liquids [458–461].

Biological effects caused by benzodiazepines include
increased muscle relaxation, sociability, feelings of well-
being, and euphoria [455]. The common adverse effects of
DBZD include impaired balance, somnolence, ataxia,
impaired thinking and self-assessment capability, loss
of coordination, slurred speech, muscle weakness, con-
fusion, amnesia, dizziness, blurred vision, drowsiness,
fatigue, lethargy, and palpitations [455]. High doses can
induce auditory and visual hallucinations, delirium, deep
sleep, seizures, and coma [455]. Long-acting flubroma-
zolam users have sleeping paralysis, unpleasant night
dreams, and somnambulistic states persisted for several
days [462].

Three main ways are used to investigate the metabo-
lism of DBZD like in the case of other NPS: (1) incubation
of DBZD with human liver microsomes followed by the
analysis of the metabolites, (2) analysis of urine samples
of a large number of NPS users, and (3) analysis of urine
samples in controlled self-administration studies [455].
The major biotransformation pathway for DBZD is in gen-
eral oxidation and glucuronidation (Table 5) [463].

A solid-phase extraction and liquid-liquid extraction
are used for sample clean-up and the extraction of DBZD.
Certain DBZD have been found in blood and urine using
immunochemical assays with high cross-reactivity (e.g.,
cloned enzyme donor immunoassay, enzyme multiplied
immunoassay technique, enzyme-linked immunosorbent
assay, and kinetic interaction of microparticles in solu-
tion) [467,479,480]. Immunochemical screening of biolo-
gical specimens for DBZD has three major drawbacks: (1)
NPS, especially the newest may be not detected when
screened by immunoassay if they are not in the scope
of the confirmation panel of benzodiazepines, (2) blood/
serum levels of DBZD can be extremely low to be detected
by immunoassays, and (3) cross-contamination [463,480].

Recently, an US-LDS-DLLME in combination with gas
chromatography-triple quadruplemass spectrometry (GC-
QQQ-MS) [481] and a nonaqueous capillary electrophor-
esis-tandem mass spectrometry [482] have been used for
the detection of DBZD in urine and serum, respectively.

4 Statistical data on the use of
illegal drugs

It seems that policies (especially reducing the open trade)
on NPS have had an impact on the decrease in its number

of the first detections in European countries. Currently,
around 50 new substances are reported each year (55 in
2018), with over 730 reported to the EU Early Warning
System [332]. Among the 731 registered today from 1997,
there are 190 synthetic cannabinoids, 138 cathinones, 99
phenethylamines, 49 opioids, 42 tryptamines, 36 arylalkyl-
amines, 28 benzodiazepines, 18 arylcyclohexylamines, 17
piperazines, 14 piperidines and pyrrolidines, 8 plants and
extracts, 5 aminoindanes, and 87 other substances [332].
The number of users of NPS among young adults (15–34)
goes from 0.1% inNorway to 3.2% in the Netherlands [332].

There are published papers on the detection of NPS
in wastewater [483] or as a part of the doping control [38].

5 Conformational analysis

For the first time we show the spatial occupation and
arrangementsof the groups of illicit drugs. The investigated
drugs (mephedrone, AH-7921, 25B-NBOMe, 25C-NBOMe,
25I-NBOMe, BZP, AM-2201, MDPV, methylone, JWH-018,
and 2C-B) are relatively simple and small molecules, so
conformational analysis is a reliable tool for the prediction
of biologically active conformations (Table 6). The confor-
mational analysis starting from the drawn structures of
the illegal drugs (mephedrone, AH-7921, 25B-NBOMe,
25C-NBOMe, 25I-NBOMe,BZP,AM-2201,MDPV,methylone,
JWH-018, and 2C-B)was performed in Macromodel, Schro-
dinger Suite 2016-1 [484] using MMFFs force field in water
and chloroform. Initially drawn structures were first mini-
mized in 10,000 steps, and then put for the conformational
search. NonbondedvanderWaals cut-offwas8.0 Å, and all
structureswithin 5 kcal/mol far from globalminimumwere
saved. All other parameters were adjusted according to our
previous investigations [485]. Images in Table 6 represent
themost probable look of the investigatedmolecules in 3D.
Also, the information about the energies of the global
minima is presented. Obtained structures can be the initial
steps in the further investigations of the interactions of
illicit drugs with various biological targets.

We used before conformational analysis to predict
physicochemical properties of selected illegal drugs [486].

Computational modeling was also performed to
explain the interactions established between NPS (substi-
tuted cathinones and benzofurans) and transporters indi-
cating the main amino acids in the binding pockets of
transporters that effect drug affinities [487]. Similarly,
molecular docking was used to predict interactions of
selected synthetic cathinones with a complex of SAP97
PDZ2 with 5-HT2A receptor peptide [488]. Also, three
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QSAR models were developed for the prediction of affi-
nity of μ-opioid receptor ligands [489]. DFT calculations
were shown as an efficient tool for the prediction of
infrared and Raman spectra of newly synthesized cath-
inones [490].

6 Conclusion

This review article is an attempt to summarize the current
state on themajor used illicit drugs: their types, synthesis,
metabolism, and identification. Currently, the number of
reported NPS is decreasing each year due to the new EU
policies with 50 new compounds in average. Investi-
gations of NPS are increasing, so now we have a large
and deep pool of data worldwide, both on natural and
on synthetic NPS. Many of NPS were initially released
from the official labs as medications against various dis-
eases orwere known for their use for religious ormedicinal
purposes. Searching for more efficient and less harmful
antidotes should be a priority now. To the best of our
knowledge, we are the first who performed the conforma-
tional analysis of selected NPS giving rise to the search of
the biologically active conformations both theoretically
and using lab experiments.
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