Applicable Analysis and Discrete Mathematics available online at http://pefmath.etf.rs

Appl. Anal. Discrete Math. 15 (2021), 233-242.
https://doi.org/10.2298/AADM200911057R

A CHARACTERISATION OF COMPLETENESS OF b-FUZZY METRIC SPACES AND NONLINEAR CONTRACTIONS

Branislav M. Randelović, Nataša A. Ćirović, Siniša N. Ješić*
The purpose of this paper is to present a common fixed point theorem for a pair of R-weakly commuting mappings defined on b-fuzzy metric spaces satisfying nonlinear contractive conditions of Boyd-Wong type, obtained in D. W. Boyd, J. S. W. Wong: On nonlinear contractions, Proc. Amer. Math. Soc. 20 (1969), 458-464.

1. INTRODUCTION AND PRELIMINARIES

Schweizer and Sklar have defined statistical metric spaces (see [9]). Following this definition Kramosil and Michalek have defined fuzzy metric spaces (see [7]).

Definition 1. [9] A binary operation $T:[0,1] \times[0,1] \rightarrow[0,1]$ is continuous t-norm if T satisfies the following conditions:
(a) T is commutative and associative;
(b) T is continuous;
(c) $T(a, 1)=a$ for all $a \in[0,1]$;
(d) $T(a, b) \leq T(c, d)$ whenever $a \leq c$ and $b \leq d$, and $a, b, c, d \in[0,1]$.

Examples of t-norm are $T(a, b)=\min \{a, b\}$ and $T(a, b)=a b$.

[^0]Definition 2. [13] A fuzzy set A in X is a function with domain X and values in $[0,1]$.

As a natural extension of fuzzy metric spaces (see $[\mathbf{7}]$) and b-metric spaces (see $[\mathbf{1}]$, [12]) S. Sedghi and N. Shobe defined b-fuzzy metric spaces.

Definition 3. [10] A 3-tuple $(X, M, *)$ is called a b-fuzzy metric space if X is an arbitrary set, T is a continuous t-norm and M is a fuzzy set on $X^{2} \times(0, \infty)$ satisfying the following conditions, for all $x, y, z \in X, s, t>0$ and $b \geq 1$ be a given real number,
(Fb-1) $M(x, y, t)>0 ;$
(Fb-2) $M(x, y, t)=1$ if and only if $x=y$;
(Fb-3) $M(x, y, t)=M(y, x, t)$;
(Fb-4) $T\left(M\left(x, y, \frac{t}{b}\right), M\left(y, z, \frac{s}{b}\right)\right) \leq M(x, y, t+s)$;
(Fb-5) $M(x, y, \cdot):(0, \infty) \rightarrow[0,1]$ is continuous;
Function M is called a b-fuzzy metric on X.
It is easy to show that every fuzzy metric space is a b-fuzzy metric space for $b=1$. Converse is not true. For examples of b-fuzzy metric spaces and b-fuzzy metric spaces that are not fuzzy metric spaces see [10] and [3].

Definition 4. [10] A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is called b-nondecreasing if $x>$ by implies $f(x) \geq f(y)$, for each $x, y \in \mathbb{R}$.
Lemma 1. [10] Let (X, M, T) be a b-fuzzy metric space. Then $M(x, y, \cdot)$ is b nondecreasing function for all $x, y \in X$.

Definition 5. [10] Let (X, M, T) be a b-fuzzy metric space and $r \in(0,1), t>0$ and $x \in X$. The set $B(x, r, t)=\{y \in X: M(x, y, t)>1-r\}$ is called an open ball with centre x and radius r with respect to t.

Remark 1. [10] Every open ball $B(x, r, t)$ is an open set.
Remark 2. [10] Let (X, M, T) be a b-fuzzy metric space. Define $\tau=\{A \subseteq X$: for every $x \in A$ there exist $t>0$ and $r \in(0,1)$ such that $B(x, r, t) \subset A\}$. Then τ is a topology on X.

Definition 6. [10] Let (X, M, T) be a b-fuzzy metric space.
(i) A sequence $\left\{x_{n}\right\}_{n}$ in X is said to be convergent to $x \in X$ if for every $t>0$ and $\varepsilon>0$ there exists positive integer N such that $M\left(x_{n}, x, t\right)>1-\varepsilon$ whenever $n \geq N$.
(ii) A sequence $\left\{x_{n}\right\}_{n}$ in X is called Cauchy sequence if, for every $t>0$ and $\varepsilon>0$ there exists positive integer N such that $M\left(x_{n}, x_{m}, t\right)>1-\varepsilon$ whenever $n, m \geq N$.
(iii) A b-fuzzy metric space is said to be complete if every Cauchy sequence in X is convergent to a point in X.

Lemma 2. [10] If (X, M, T) is a b-fuzzy metric space and sequence $\left\{x_{n}\right\}$ converges to x in X, then:
(i) x is unique;
(ii) $\left\{x_{n}\right\}$ is a Cauchy sequence in X.

Remark 3. Let (X, M, T) be a b-fuzzy metric space. Notice that a sequence $\left\{x_{n}\right\}$ from X converges to a point $x \in X$ if and only if $\lim _{n \rightarrow \infty} M\left(x_{n}, x, t\right)=1$.

Lemma 3. [11] If (X, M, T) is a b-fuzzy metric space and sequence $\left\{x_{n}\right\}$ converges to x in X, then

$$
\begin{aligned}
& M\left(x, y, \frac{t}{b}\right) \leq \limsup _{n \rightarrow+\infty} M\left(x_{n}, y, t\right) \leq M(x, y, b t) \\
& M\left(x, y, \frac{t}{b}\right) \leq \liminf _{n \rightarrow+\infty} M\left(x_{n}, y, t\right) \leq M(x, y, b t)
\end{aligned}
$$

For more results see $[\mathbf{4}][5],[6]$ and $[\mathbf{8}]$.

2. MAIN RESULTS

Definition 7. Let (X, M, T) be a b-fuzzy metric space and $A \subseteq X$. Closure of the set A is the smallest closed set containing A, denoted by \bar{A}.

Definition 8. Let (X, M, T) be a b-fuzzy metric space and $r \in(0,1), t>0$ and $x \in X$. The set $B[x, r, t]=\{y \in X: M(x, y, t) \geq 1-r\}$ is called a closed ball with centre x and radius r with respect to t.

Definition 9. Let (X, M, T) be a b-fuzzy metric space. A collection $\left\{F_{n}\right\}_{n \in \mathbb{N}}$ is said to have b-fuzzy diameter zero if for each $r \in(0,1)$ and each $t>0$ there exists $n_{0} \in \mathbb{N}$ such that $M(x, y, t)>1-r$ for all $x, y \in F_{n_{0}}$.

Theorem 1. A b-fuzzy metric space (X, M, T) is complete if and only if every nested sequence $\left\{F_{n}\right\}_{n \in \mathbb{N}}$ of nonempty closed sets with b-fuzzy diameter zero have nonempty intersection.

Proof. Suppose that the given condition is satisfied. Let us prove that (X, M, T) is complete. Let $\left\{x_{n}\right\}$ be a Cauchy sequence in X. Set $B_{n}=\left\{x_{k}: k \geq n\right\}$ and $F_{n}=\overline{B_{n}}$, then $\left\{F_{n}\right\}$ has b-fuzzy diameter zero. Indeed, for given $s \in(0,1)$ we can choose $r \in(0,1)$ such that $T(1-r, T(1-r, 1-r))>1-s$. Since $\left\{x_{n}\right\}$ is Cauchy sequence, there exists $n_{0} \in \mathbb{N}$ such that $M\left(x_{n}, x_{m}, \frac{t}{4 b^{2}}\right)>1-r$ for all $m, n \geq n_{0}$. Therefore, $M\left(x, y, \frac{t}{4 b^{2}}\right)>1-r$ for all $x, y \in B_{n_{0}}$.

Let $x, y \in F_{n_{0}}$. Then there exist sequences $\left\{x_{n}^{1}\right\}$ and $\left\{y_{n}^{1}\right\}$ in $B_{n_{0}}$ such that $x_{n}^{1} \rightarrow x$ and $y_{n}^{1} \rightarrow y$. Thus, $x_{n}^{1} \in B\left(x, r, \frac{t}{4 b^{2}}\right)$ and $y_{n}^{1} \in B\left(y, r, \frac{t}{4 b^{2}}\right)$ for n sufficiently
large. We have that

$$
\begin{aligned}
M(x, y, t) & \geq T\left(M\left(x, x_{n}^{1}, \frac{t}{2 b}\right), M\left(x_{n}^{1}, y, \frac{t}{2 b}\right)\right) \\
& \geq T\left(M\left(x, x_{n}^{1}, \frac{t}{2 b}\right), T\left(M\left(x_{n}^{1}, y_{n}^{1}, \frac{t}{4 b^{2}}\right), M\left(y_{n}^{1}, y, \frac{t}{4 b^{2}}\right)\right)\right) \\
& \geq T\left(M\left(x, x_{n}^{1}, \frac{t}{2 b}\right), T(1-r, 1-r)\right)
\end{aligned}
$$

Since $M(x, y, \cdot)$ is b-nondecreasing and $\frac{t}{2 b}>b \cdot \frac{t}{4 b^{2}}$ it follows that $M\left(x, x_{n}^{1}, \frac{t}{2 b}\right) \geq$ $M\left(x, x_{n}^{1}, \frac{t}{4 b^{2}}\right)>1-r$. From previous we get

$$
M(x, y, t)>T(1-r, T(1-r, 1-r))>1-s
$$

Thus, $M(x, y, t)>1-s$ for all $x, y \in F_{n_{0}}$ i.e. $\left\{F_{n}\right\}$ has b-fuzzy diameter zero and by hypothesis $\bigcap_{n \in \mathbb{N}} F_{n}$.

Take $x \in \bigcap_{n \in \mathbb{N}} F_{n}$. We show that $x_{n} \rightarrow x$. Then, for $r \in(0,1)$ and $t>0$ there exists $n_{1} \in \mathbb{N}$ such that $M\left(x_{n}, x, t\right)>1-r$ for all $n \geq n_{1}$. Thus, $M\left(x_{n}, x, t\right) \rightarrow 1$ as $n \rightarrow \infty$ for each $t>0$, i.e. $x_{n} \rightarrow x$. Therefore, (X, M, T) is complete.

Conversely, suppose that (X, M, T) is complete and $\left\{F_{n}\right\}_{n \in \mathbb{N}}$ is a nested sequence of nonempty closed sets with b-fuzzy diameter zero. For each $n \in \mathbb{N}$ choose a point $x_{n} \in F_{n}$. We show that $\left\{x_{n}\right\}$ is a Cauchy sequence. Indeed, since $\left\{F_{n}\right\}_{n \in \mathbb{N}}$ has b-fuzzy diameter zero, for $t>0$ and $r \in(0,1)$ there exists $n_{0} \in \mathbb{N}$ such that $M(x, y, t)>1-r$ for all $x, y \in F_{n_{0}}$. Since $\left\{F_{n}\right\}$ is nested sequence, it follows that $M\left(x_{n}, x_{m}, t\right)>1-r$ for all $n, m \geq n_{0}$. Thus, $\left\{x_{n}\right\}$ is a Cauchy sequence. Since (X, M, T) is complete, $x_{n} \rightarrow x$ for some $x \in X$. It follow that $x \in \overline{F_{n}}=F_{n}$ for every n, i.e. $x \in \bigcap_{n \in \mathbb{N}} F_{n}$.

Remark 4. The element $x \in \bigcap_{n \in \mathbb{N}} F_{n}$ is unique. Indeed, if we suppose that there are two elements $x, y \in \bigcap_{n \in \mathbb{N}} F_{n}$, since $\left\{F_{n}\right\}$ has b-fuzzy diameter zero, for arbitrary fixed $t>0$ it follows that $M(x, y, t)>1-\frac{1}{n}$ for each $n \in \mathbb{N}$. This implies $M(x, y, t)=1$, i.e. $x=y$.

Definition 10. Let (X, M, T) be a b-fuzzy metric space. Let the mapping $\delta_{A}(t)$: $(0, \infty) \rightarrow[0,1]$ be defined as

$$
\delta_{A}(t)=\inf _{x, y \in A} \sup _{\varepsilon<t} M(x, y, \varepsilon)
$$

The constant $\delta_{A}=\sup _{t>0} \delta_{A}(t)$ is called b-fuzzy diameter of set A.
Definition 11. If $\delta_{A}=1$ the set A is called bF-strongly bounded.
Lemma 4. Let (X, M, T) be a b-fuzzy metric space. A set $A \subseteq X$ is bF-strongly bounded if and only if for each $r \in(0,1)$ there exists $t>0$ such that $M(x, y, t)>$ $1-r$ for all $x, y \in A$.

Proof. The proof follows from the definitions of sup A and $\inf A$ of non-empty sets.

Definition 12. [11] Let (X, M, T) be a b-fuzzy metric space and let f and g be self-mappings of X. The mappings f and g will be said to be R-weakly commuting if there exists some positive real number R such that

$$
\begin{equation*}
M(f(g(x)), g(f(x)), R t) \geq M(f(x), g(x), t) \tag{1}
\end{equation*}
$$

for all $t>0$ and each $x \in X$.
Throughout this paper we will consider b-fuzzy metric spaces that are not fuzzy metric spaces i.e. $b>1$, satisfying the next condition.

$$
\begin{equation*}
M(x, y, 0)=\lim _{t \rightarrow 0+} M(x, y, t)=0 \quad \text { for } x \neq y \tag{2}
\end{equation*}
$$

Lemma 5. Let (X, M, T) be a b-fuzzy metric space, $b>1$, which satisfies (2). Let $\varphi:(0, \infty) \rightarrow(0, \infty)$ be a continuous function which satisfies $\varphi(t)<\frac{t}{b}$ for all $t>0$. If for $x, y \in X$ it holds that $M(x, y, \varphi(t)) \geq M(x, y, t)$ for all $t>0$ then $x=y$.

Proof. First note that from $\varphi(t)<\frac{t}{b}$, by induction we get that $\varphi^{n}(t)<\frac{t}{b^{n}}$. From previous it follows that $\lim _{n \rightarrow \infty} \varphi^{n}(t)=0$ for all $t \geq 0$ and $b>1$.

Let us suppose that $M(x, y, \varphi(t)) \geq M(x, y, t)$ and $x \neq y$. From this condition, by induction, we have that $M\left(x, y, \varphi^{n}(t)\right) \geq M(x, y, t)$. Taking limit as $n \rightarrow \infty$, we get that $M(x, y, t)=0$ for all $t>0$, which is a contradiction with (Fb-1) i.e. $x=y$.

Theorem 2. Let (X, M, T) be a complete b-fuzzy metric space with $b>1$, which satisfies (2) and let f and g be R-weakly commuting self-mappings on X, g is a continuous function, $g(X)$ is fF-strongly bounded set and $g(X) \subseteq f(X)$, satisfying the condition

$$
\begin{equation*}
M(g(x), g(y), \varphi(t)) \geq M(f(x), f(y), t) \tag{3}
\end{equation*}
$$

for some continuous function $\varphi:(0, \infty) \rightarrow(0, \infty)$, which satisfies $\varphi(t)<t$ for all $t>0$. Then f and g have a unique common fixed point.

Proof. Let $x_{0} \in X$ be an arbitrary point. Since $g(X) \subseteq f(X)$, there exists a $x_{1} \in X$ such that $g\left(x_{0}\right)=f\left(x_{1}\right)$. By induction, a sequence $\left\{x_{n}\right\}$ can be chosen such that $g\left(x_{n}\right)=f\left(x_{n+1}\right)$.

Let us consider nested sequence of nonempty closed sets defined by

$$
F_{n}=\overline{\left\{g x_{n}, g x_{n+1}, \ldots\right\}}, n \in \mathbb{N}
$$

We shall prove that the family $\left\{F_{n}\right\}_{n \in \mathbb{N}}$ has b-fuzzy diameter zero.

In this sense, let $r \in(0,1)$ and $t>0$ be arbitrary. From $F_{k} \subseteq \overline{g(X)}$ it follows that F_{k} is a $b \mathrm{~F}$-strongly bounded set for arbitrary $k \in \mathbb{N}$. It means that there exists $t_{0}>0$ such that

$$
\begin{equation*}
M\left(x, y, t_{0}\right)>1-r \quad \text { for all } \quad x, y \in F_{k} \tag{4}
\end{equation*}
$$

From $\lim _{n \rightarrow \infty} \varphi^{n}\left(t_{0}\right)=0$ we conclude that there exists $m \in \mathbb{N}$ such that $\varphi^{m}\left(t_{0}\right)<t$. Let $n=m+k$ and $x, y \in F_{n}$ be arbitrary. There exist sequences $\left\{g x_{n(i)}\right\},\left\{g x_{n(j)}\right\}$ in $F_{n} \quad(n(i), n(j) \geq n \quad i, j \in \mathbb{N})$ such that $\lim _{i \rightarrow \infty} g x_{n(i)}=x$ and $\lim _{j \rightarrow \infty} g x_{n(j)}=y$.

From (3) we have

$$
M\left(g x_{n(i)}, g x_{n(j)}, \varphi(t)\right) \geq M\left(f x_{n(i)}, f x_{n(j)}, t\right)=M\left(g x_{n(i)-1}, g x_{n(j)-1}, t\right)
$$

Thus, by induction we get

$$
M\left(g x_{n(i)}, g x_{n(j)}, \varphi^{m}(t)\right) \geq M\left(g x_{n(i)-m}, g x_{n(j)-m}, t\right)
$$

Since $\varphi^{m}\left(t_{0}\right)<t<b t$ and because $M(x, y, \cdot)$ is a b-non-decreasing function, from the last inequalities it follows that

$$
\begin{equation*}
M\left(g x_{n(i)}, g x_{n(j)}, t\right) \geq M\left(g x_{n(i)}, g x_{n(j)}, \varphi^{m}\left(t_{0}\right)\right) \geq M\left(g x_{n(i)-m}, g x_{n(j)-m}, t_{0}\right) \tag{5}
\end{equation*}
$$

As $\left\{g x_{n(i)-m}\right\},\left\{g x_{n(j)-m}\right\}$ are sequences in F_{k} from (4) it follows that

$$
M\left(g x_{n(i)-m}, g x_{n(j)-m}, t_{0}\right)>1-r
$$

for all $i, j \in \mathbb{N}$.
Finally, from previous and (6) we conclude that $M\left(g x_{n(i)}, g x_{n(j)}, t\right)>1-r$ for all $i, j \in \mathbb{N}$. Taking liminf as $j \rightarrow \infty$ we get that

$$
M\left(g x_{n(i)}, y, b t\right)>1-r
$$

for all $t>0$ and $x, y \in F_{n}$.
Taking liminf as $i \rightarrow \infty$ it follows that $M\left(x, y, b^{2} t\right)>1-r$, for all $t>0$ for all $x, y \in F_{n}$. From previous it follows that $M(x, y, t)>1-r$, for all $t>0$ for all $x, y \in F_{n}$ i.e. family $\left\{F_{n}\right\}_{n \in \mathbb{N}}$ has b-fuzzy diameter zero.

Applying Theorem 1 we conclude that this family has nonempty intersection, which consists of exactly one point z. Since the family $\left\{F_{n}\right\}_{n \in \mathbb{N}}$ has b-fuzzy diameter zero and $z \in F_{n}$ for all $n \in \mathbb{N}$ then for each $r \in(0,1)$ and each $t>0$ there exists $n_{0} \in \mathbb{N}$ such that for all $n \geq n_{0}$ hold

$$
M\left(g x_{n}, z, t\right)>1-r .
$$

From the last it follows that for each $r \in(0,1)$ hold

$$
\lim _{n \rightarrow \infty} M\left(g x_{n}, z, t\right)>1-r
$$

Taking that $r \rightarrow 0$ we get

$$
\lim _{n \rightarrow \infty} M\left(g x_{n}, z, t\right)=1
$$

i.e. $\lim _{n \rightarrow \infty} g x_{n}=z$. From the definition of sequence $\left\{f x_{n}\right\}$ it follows that $\lim _{n \rightarrow \infty} f x_{n}=$ z.

Let us prove that z is a common fixed point of mappings f and g. From condition (1) we have that for all $t>0$ holds

$$
M\left(f\left(g\left(x_{n}\right)\right), g\left(f\left(x_{n}\right)\right), R t\right) \geq M\left(f\left(x_{n}\right), g\left(x_{n}\right), t\right)
$$

For previous we get that for all $t>0$ holds

$$
M\left(f\left(g\left(x_{n}\right)\right), g\left(f\left(x_{n}\right)\right), R t\right) \geq T\left(M\left(f\left(x_{n}\right), z, \frac{t}{b}\right), M\left(z, g\left(x_{n}\right), \frac{t}{b}\right)\right)
$$

Since $\lim _{n \rightarrow \infty} f x_{n}=\lim _{n \rightarrow \infty} g x_{n}=z$, taking liminf when $n \rightarrow \infty$ and using Lemma 3 we get that for all $t>0$ it holds that

$$
\liminf _{n \rightarrow \infty} M\left(f\left(g\left(x_{n}\right)\right), g(z), b R t\right) \geq 1
$$

i. e.

$$
\liminf _{n \rightarrow \infty} M\left(f\left(g\left(x_{n}\right)\right), g\left(f\left(x_{n}\right)\right), t\right)=1
$$

Similarly, using Lemma 3 we can prove that for all $t>0$ it holds that

$$
\limsup _{n \rightarrow \infty} M\left(f\left(g\left(x_{n}\right)\right), g\left(f\left(x_{n}\right)\right), t\right)=1
$$

From previous we get that for all $t>0$ it holds that

$$
\lim _{n \rightarrow \infty} M\left(f\left(g\left(x_{n}\right)\right), g\left(f\left(x_{n}\right)\right), t\right)=1
$$

Since g is continuous, we get that

$$
\lim _{n \rightarrow \infty} f\left(g\left(x_{n}\right)\right)=\lim _{n \rightarrow \infty} g\left(f\left(x_{n}\right)\right)=g\left(\lim _{n \rightarrow \infty} f\left(x_{n}\right)\right)=g(z)
$$

From the inequalities (3) follows that

$$
M\left(g\left(x_{n}\right), g\left(g\left(x_{n}\right)\right), \varphi(t)\right) \geq M\left(f\left(x_{n}\right), f\left(g\left(x_{n}\right)\right), t\right)
$$

for all $t>0$. Similarly as in the previous part, using Lemma 3 and taking liminf (limsup) as $n \rightarrow \infty$, we get

$$
M(z, g(z), \varphi(t)) \geq M(z, g(z), t)
$$

for all $t>0$. Applying Lemma 5 we conclude that $g(z)=z$.
Since $g(X) \subseteq f(X)$, there exists $z_{1} \in X$ such that $f\left(z_{1}\right)=g(z)=z$. From starting condition we have that

$$
M\left(g\left(g\left(x_{n}\right)\right), g\left(z_{1}\right), \varphi(t)\right) \geq M\left(f\left(g\left(x_{n}\right)\right), f\left(z_{1}\right), t\right)
$$

holds for all $t>0$. Using Lemma 3 and taking $\lim \inf (\limsup)$ as $n \rightarrow \infty$, we get

$$
M\left(z, g\left(z_{1}\right), \varphi(t)\right) \geq M(z, z, t)=1
$$

for all $t>0$. From $\varphi(t)<\frac{t}{b}$, i.e. $t>b \varphi(t)$, since $M(x, y, \cdot)$ is b-nondecreasing it follows that $M\left(z, g\left(z_{1}\right), t\right) \geq M\left(z, g\left(z_{1}\right), \varphi(t)\right)=1$ for all $t>0$. From previous it follows that $M\left(z, g\left(z_{1}\right), t\right)=1$ for all $t>0$. i.e. $g\left(z_{1}\right)=z$.

For arbitrary $t>0$ there exists $t_{1}>0$ such that $t=R t_{1}$. From $f\left(z_{1}\right)=z$, $g\left(z_{1}\right)=z$ we get

$$
\begin{aligned}
M(g(z), f(z), t) & =M\left(g(z), f(z), R t_{1}\right)=M\left(g\left(f\left(z_{1}\right)\right), f\left(g\left(z_{1}\right)\right), R t_{1}\right) \\
& \geq M\left(f\left(z_{1}\right), g\left(z_{1}\right), t_{1}\right)=M\left(z, z, t_{1}\right)=1
\end{aligned}
$$

from where it follows that $f(z)=g(z)=z$.
Let us prove that z is a unique common fixed point. For this purpose let us suppose that there exists another common fixed point, denoted by u. From the starting condition, for all $t>0$ it follows that

$$
M(g(z), g(u), \varphi(t)) \geq M(f(z), f(u), t)
$$

i.e.

$$
M(z, u, \varphi(t)) \geq M(z, u, t)
$$

Finally, applying Lemma 5 it follows that $z=u$. This completes the proof.

Example 1. Let (X, M, T) be a complete b-fuzzy metric space $d(x, y)=|x-y|$ with $M(x, y, t)=e^{-\frac{|x-y|^{2}}{t}}$ and $X=[0,+\infty) \subset \mathbb{R}$. Let

$$
f(x)=2 x, \quad g(x)=\frac{x}{1+x}, \quad g(X)=[0,1) \subset X=f(X)
$$

and

$$
\varphi(t)= \begin{cases}\frac{t}{3+t}, & 0<t \leq 1 \\ \frac{t}{4}, & t \geq 1\end{cases}
$$

We shall prove that all the conditions of Theorem 2 are satisfied, too. Because $g(f(x))=\frac{2 x}{1+2 x}$ and $f(g(x))=\frac{2 x}{1+x}$ we conclude that $f(x)$ and $g(x)$ are not commuting mappings, but they are R-weakly commuting for $R=1$. We have that for all $x \geq 0$ follow

$$
|f(g(x))-g(f(x))|=\frac{2 x^{2}}{(1+x)(1+2 x)}
$$

and

$$
|f(x)-g(x)|=\frac{x+2 x^{2}}{1+x}
$$

Since $\frac{2 x^{2}}{(1+x)(1+2 x)} \leq \frac{x+2 x^{2}}{1+x}$ and e^{-s} is decreasing function, we have that

$$
M(f(g(x)), g(f(x)), t) \geq M(f(x), g(x), t)
$$

for all $x, t \geq 0$ i.e. $f(x)$ and $g(x)$ are R-weakly commuting for $R=1$.
We shall prove that the condition (3) is satisfied, too. Note that for all $x, y \in$ X we have that $\frac{1}{(1+x)^{2}(1+y)^{2}} \leq 1$. We will consider two possibilities.

If $0<t \leq 1$, since $3+t \leq 4$, we have

$$
\frac{\left|\frac{x-y}{(1+x)(1+y)}\right|^{2}}{\frac{t}{3+t}}=\frac{(3+t)|x-y|^{2}}{t(1+x)^{2}(1+y)^{2}} \leq \frac{4|x-y|^{2}}{t}
$$

Since e^{-s} is decreasing function, it follow that, for $0<t \leq 1$

$$
M(g(x), g(y), \varphi(t)) \geq M(f(x), f(y), t)
$$

If $t \geq 1$, we have

$$
\frac{\left|\frac{x-y}{(1+x)(1+y)}\right|^{2}}{\frac{t}{4}}=\frac{4|x-y|^{2}}{t(1+x)^{2}(1+y)^{2}} \leq \frac{4|x-y|^{2}}{t}
$$

Since e^{-s} is decreasing function, it follow that, for $t \geq 1$

$$
M(g(x), g(y), \varphi(t)) \geq M(f(x), f(y), t)
$$

From the last inequalities we conclude that the condition (3) is satisfied. Since φ satisfies all the conditions of Theorem 2, we get that $f(x)$ and $g(x)$ have a unique common fixed point. It is easy to see that this point is $x=0$.

One consequence of previous theorem is the following corollary.
Corollary 1. Let (X, M, T) be a complete b-fuzzy metric space with $b>1$, which satisfies (2). Let g be a continuous function on X, such that $g(X)$ is bF-strongly bounded set and $g(X) \subseteq X$, satisfying the condition

$$
\begin{equation*}
M(g(x), g(y), \varphi(t)) \geq M(x, y, t) \tag{6}
\end{equation*}
$$

for some continuous function $\varphi:(0, \infty) \rightarrow(0, \infty)$, which satisfies $\varphi(t)<\frac{t}{b}$ for all $t>0$. Then g has a unique fixed point.

Acknowledgments. This work has been partially supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia, Grant No. 174032.

REFERENCES

1. S. Czerwik: Contraction mappings in b-metric spaces. Acta Math. Inform. Univ. Ostrav., 1(1) (1993), 5-11.
2. D. W. Boyd, J. S. W. Wong: On nonlinear contractions. Proc. Amer. Math. Soc., 20 (1969), 458-464.
3. T. Došenović, A. Javaheri, S. Sedghi, N. Shobe: Coupled fixed point theorem in b-fuzzy metric spaces. Novi Sad J. Math., 41(1) (2017), 77-88.
4. A. George, P. Veeramani: On some results in fuzzy metric spaces. Fuzzy Sets Syst, 64 (1994), 395-399.
5. S. N. Ješı́́, N. A. Babačev: Common fixed point theorems in intuitionistic fuzzy metric spaces and \mathscr{L}-fuzzy metric spaces with nonlinear contractive conditions. Chaos, Solitons \& Fractals, 37 (2008), 675-687.
6. S. N. Ješić, D. O'Regan, N. A. Babačev: A common fixed point theorem for R weakly commuting mappings in probabilistic spaces with nonlinear contractive conditions. Appl. Math. Comp., 201 (2008), 272-281.
7. J. Kramosil, J. Michalek: Fuzzy metric and statistical metric spaces. Kybernetica, 11 (1975), 326-334.
8. D. Rakić, A. Mukheimer, T. Došenović, Z. Mitrović, S. Radenović: On some new fixed point results in b-fuzzy metric spaces. J. Inequal. Appl., 99 (2020), https://doi.org/10.1186/s13660-020-02371-3
9. B. Schweizer, A. Sklar: Statistical metric spaces. Pacific J. Math., 10 (1960), 415417.
10. S. Sedghi, N. Shobe: Common fixed point theorem in b-fuzzy metric space. Nonlin. Funct. Anal. Appl., 17(3) (2012), 349-359.
11. S. Sedghi, N. Shobe: Common fixed point theorem for R-weakly commuting maps in b-fuzzy metric space. Nonlin. Funct. Anal. Appl., 19(2) (2014), 385-395.
12. T. Suzuki: Basic inequality on a b-metric space and its applications. J. Inequal. Appl., 256 (2017), https://doi.org/10.1186/s13660-017-1528-3
13. L. A. Zadeh: Fuzzy sets. Inform. Contr., 89 (1965), 338-353.

Branislav M. Ranđelović

(Received 11. 09. 2020.)
Department of Mathematics
(Revised 30. 12. 2020.)
Faculty of Electronic Engineering
University of Niš, Serbia
E-mail: branislav.randjelovic@elfak.ni.ac.rs

Nataša A. Ćirović

Department of Applied Mathematics
School of Electrical Engineering
University of Belgrade, Serbia
E-mail: natasa@etf.bg.ac.rs
Siniša N. Ješić
Department of Applied Mathematics
School of Electrical Engineering
University of Belgrade, Serbia
E-mail: jesic@etf.bg.ac.rs

[^0]: *Corresponding author. Siniša N. Ješić
 2020 Mathematics Subject Classification. 47H10, 54H25
 Keywords and Phrases. b-Fuzzy metric spaces, R-Weakly commuting mappings,
 Common fixed point.

