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A CHARACTERISATION OF COMPLETENESS OF
b-FUZZY METRIC SPACES AND NONLINEAR

CONTRACTIONS

Branislav M. Rand-elović, Nataša A. Ćirović, Sinǐsa N. Ješić∗

The purpose of this paper is to present a common fixed point theorem for

a pair of R-weakly commuting mappings defined on b-fuzzy metric spaces

satisfying nonlinear contractive conditions of Boyd-Wong type, obtained in

D. W. Boyd, J. S. W. Wong: On nonlinear contractions, Proc. Amer.

Math. Soc. 20 (1969), 458–464.

1. INTRODUCTION AND PRELIMINARIES

Schweizer and Sklar have defined statistical metric spaces (see [9]). Following
this definition Kramosil and Michalek have defined fuzzy metric spaces (see [7]).

Definition 1. [9] A binary operation T : [0, 1]× [0, 1]→ [0, 1] is continuous t-norm
if T satisfies the following conditions:

(a) T is commutative and associative;

(b) T is continuous;

(c) T (a, 1) = a for all a ∈ [0, 1];

(d) T (a, b) ≤ T (c, d) whenever a ≤ c and b ≤ d, and a, b, c, d ∈ [0, 1].

Examples of t-norm are T (a, b) = min{a, b} and T (a, b) = ab.
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Definition 2. [13] A fuzzy set A in X is a function with domain X and values in
[0, 1].

As a natural extension of fuzzy metric spaces (see [7]) and b-metric spaces (see [1],
[12]) S. Sedghi and N. Shobe defined b-fuzzy metric spaces.

Definition 3. [10] A 3-tuple (X,M, ∗) is called a b-fuzzy metric space if X is
an arbitrary set, T is a continuous t-norm and M is a fuzzy set on X2 × (0,∞)
satisfying the following conditions, for all x, y, z ∈ X, s, t > 0 and b ≥ 1 be a given
real number,

(Fb-1) M(x, y, t) > 0;

(Fb-2) M(x, y, t) = 1 if and only if x = y;

(Fb-3) M(x, y, t) = M(y, x, t);

(Fb-4) T (M(x, y, tb ),M(y, z, sb )) ≤M(x, y, t+ s);

(Fb-5) M(x, y, ·) : (0,∞)→ [0, 1] is continuous;

Function M is called a b-fuzzy metric on X.

It is easy to show that every fuzzy metric space is a b-fuzzy metric space for
b = 1. Converse is not true. For examples of b-fuzzy metric spaces and b-fuzzy
metric spaces that are not fuzzy metric spaces see [10] and [3].

Definition 4. [10] A function f : R → R is called b-nondecreasing if x > by
implies f(x) ≥ f(y), for each x, y ∈ R.

Lemma 1. [10] Let (X,M, T ) be a b-fuzzy metric space. Then M(x, y, ·) is b-
nondecreasing function for all x, y ∈ X.

Definition 5. [10] Let (X,M, T ) be a b-fuzzy metric space and r ∈ (0, 1), t > 0
and x ∈ X. The set B(x, r, t) = {y ∈ X : M(x, y, t) > 1− r} is called an open ball
with centre x and radius r with respect to t.

Remark 1. [10] Every open ball B(x, r, t) is an open set.

Remark 2. [10] Let (X,M, T ) be a b-fuzzy metric space. Define τ = {A ⊆ X :
for every x ∈ A there exist t > 0 and r ∈ (0, 1) such that B(x, r, t) ⊂ A}. Then τ
is a topology on X.

Definition 6. [10] Let (X,M, T ) be a b-fuzzy metric space.

(i) A sequence {xn}n in X is said to be convergent to x ∈ X if for every t > 0 and
ε > 0 there exists positive integer N such that M(xn, x, t) > 1 − ε whenever
n ≥ N.

(ii) A sequence {xn}n in X is called Cauchy sequence if, for every t > 0 and
ε > 0 there exists positive integer N such that M(xn, xm, t) > 1− ε whenever
n,m ≥ N.

(iii) A b-fuzzy metric space is said to be complete if every Cauchy sequence in X
is convergent to a point in X.
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Lemma 2. [10] If (X,M, T ) is a b-fuzzy metric space and sequence {xn} converges
to x in X, then:

(i) x is unique;

(ii) {xn} is a Cauchy sequence in X.

Remark 3. Let (X,M, T ) be a b-fuzzy metric space. Notice that a sequence {xn}
from X converges to a point x ∈ X if and only if lim

n→∞
M(xn, x, t) = 1.

Lemma 3. [11] If (X,M, T ) is a b-fuzzy metric space and sequence {xn} converges
to x in X, then

M

(
x, y,

t

b

)
≤ lim sup

n→+∞
M(xn, y, t) ≤M(x, y, bt),

M

(
x, y,

t

b

)
≤ lim inf

n→+∞
M(xn, y, t) ≤M(x, y, bt).

For more results see [4] [5], [6] and [8].

2. MAIN RESULTS

Definition 7. Let (X,M, T ) be a b-fuzzy metric space and A ⊆ X. Closure of the
set A is the smallest closed set containing A, denoted by Ā.

Definition 8. Let (X,M, T ) be a b-fuzzy metric space and r ∈ (0, 1), t > 0 and
x ∈ X. The set B[x, r, t] = {y ∈ X : M(x, y, t) ≥ 1− r} is called a closed ball with
centre x and radius r with respect to t.

Definition 9. Let (X,M, T ) be a b-fuzzy metric space. A collection {Fn}n∈N is
said to have b-fuzzy diameter zero if for each r ∈ (0, 1) and each t > 0 there exists
n0 ∈ N such that M(x, y, t) > 1− r for all x, y ∈ Fn0

.

Theorem 1. A b-fuzzy metric space (X,M, T ) is complete if and only if every
nested sequence {Fn}n∈N of nonempty closed sets with b-fuzzy diameter zero have
nonempty intersection.

Proof. Suppose that the given condition is satisfied. Let us prove that (X,M, T )
is complete. Let {xn} be a Cauchy sequence in X. Set Bn = {xk : k ≥ n} and
Fn = Bn, then {Fn} has b-fuzzy diameter zero. Indeed, for given s ∈ (0, 1) we can
choose r ∈ (0, 1) such that T (1− r, T (1− r, 1− r)) > 1− s. Since {xn} is Cauchy
sequence, there exists n0 ∈ N such that M

(
xn, xm,

t
4b2

)
> 1− r for all m,n ≥ n0.

Therefore, M
(
x, y, t

4b2

)
> 1− r for all x, y ∈ Bn0

.

Let x, y ∈ Fn0
. Then there exist sequences {x1

n} and {y1
n} in Bn0

such that
x1
n → x and y1

n → y. Thus, x1
n ∈ B

(
x, r, t

4b2

)
and y1

n ∈ B
(
y, r, t

4b2

)
for n sufficiently
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large. We have that

M(x, y, t) ≥ T
(
M

(
x, x1

n,
t

2b

)
,M

(
x1
n, y,

t

2b

))
≥ T

(
M

(
x, x1

n,
t

2b

)
, T

(
M

(
x1
n, y

1
n,

t

4b2

)
,M

(
y1
n, y,

t

4b2

)))
≥ T

(
M

(
x, x1

n,
t

2b

)
, T (1− r, 1− r)

)
Since M(x, y, ·) is b-nondecreasing and t

2b > b · t
4b2 it follows that M

(
x, x1

n,
t
2b

)
≥

M
(
x, x1

n,
t

4b2

)
> 1− r. From previous we get

M(x, y, t) > T (1− r, T (1− r, 1− r)) > 1− s

Thus, M(x, y, t) > 1− s for all x, y ∈ Fn0
i.e. {Fn} has b-fuzzy diameter zero and

by hypothesis
⋂

n∈N Fn.

Take x ∈
⋂

n∈N Fn. We show that xn → x. Then, for r ∈ (0, 1) and t > 0 there
exists n1 ∈ N such that M(xn, x, t) > 1 − r for all n ≥ n1. Thus, M(xn, x, t) → 1
as n→∞ for each t > 0, i.e. xn → x. Therefore, (X,M, T ) is complete.

Conversely, suppose that (X,M, T ) is complete and {Fn}n∈N is a nested
sequence of nonempty closed sets with b-fuzzy diameter zero. For each n ∈ N
choose a point xn ∈ Fn. We show that {xn} is a Cauchy sequence. Indeed, since
{Fn}n∈N has b-fuzzy diameter zero, for t > 0 and r ∈ (0, 1) there exists n0 ∈ N such
that M(x, y, t) > 1− r for all x, y ∈ Fn0

. Since {Fn} is nested sequence, it follows
that M(xn, xm, t) > 1 − r for all n,m ≥ n0. Thus, {xn} is a Cauchy sequence.
Since (X,M, T ) is complete, xn → x for some x ∈ X. It follow that x ∈ Fn = Fn

for every n, i.e. x ∈
⋂

n∈N Fn.

Remark 4. The element x ∈
⋂

n∈N Fn is unique. Indeed, if we suppose that
there are two elements x, y ∈

⋂
n∈N Fn, since {Fn} has b-fuzzy diameter zero, for

arbitrary fixed t > 0 it follows that M(x, y, t) > 1− 1
n for each n ∈ N. This implies

M(x, y, t) = 1, i.e. x = y.

Definition 10. Let (X,M, T ) be a b-fuzzy metric space. Let the mapping δA(t) :
(0,∞)→ [0, 1] be defined as

δA(t) = inf
x,y∈A

sup
ε< t

M(x, y, ε).

The constant δA = supt>0 δA(t) is called b-fuzzy diameter of set A.

Definition 11. If δA = 1 the set A is called bF-strongly bounded.

Lemma 4. Let (X,M, T ) be a b-fuzzy metric space. A set A ⊆ X is bF-strongly
bounded if and only if for each r ∈ (0, 1) there exists t > 0 such that M(x, y, t) >
1− r for all x, y ∈ A.
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Proof. The proof follows from the definitions of sup A and inf A of non-empty
sets.

Definition 12. [11] Let (X,M, T ) be a b-fuzzy metric space and let f and g be
self-mappings of X. The mappings f and g will be said to be R-weakly commuting
if there exists some positive real number R such that

(1) M(f(g(x)), g(f(x)), Rt) ≥M(f(x), g(x), t)

for all t > 0 and each x ∈ X.

Throughout this paper we will consider b-fuzzy metric spaces that are not
fuzzy metric spaces i.e. b > 1, satisfying the next condition.

(2) M(x, y, 0) = lim
t→0+

M(x, y, t) = 0 for x 6= y

Lemma 5. Let (X,M, T ) be a b-fuzzy metric space, b > 1, which satisfies (2). Let
ϕ : (0,∞)→ (0,∞) be a continuous function which satisfies ϕ(t) < t

b for all t > 0.
If for x, y ∈ X it holds that M(x, y, ϕ(t)) ≥M(x, y, t) for all t > 0 then x = y.

Proof. First note that from ϕ(t) < t
b , by induction we get that ϕn(t) < t

bn . From
previous it follows that lim

n→∞
ϕn(t) = 0 for all t ≥ 0 and b > 1.

Let us suppose that M(x, y, ϕ(t)) ≥ M(x, y, t) and x 6= y. From this con-
dition, by induction, we have that M(x, y, ϕn(t)) ≥ M(x, y, t). Taking limit as
n → ∞, we get that M(x, y, t) = 0 for all t > 0, which is a contradiction with
(Fb-1) i.e. x = y.

Theorem 2. Let (X,M, T ) be a complete b-fuzzy metric space with b > 1, which
satisfies (2) and let f and g be R-weakly commuting self-mappings on X, g is a
continuous function, g(X) is fF-strongly bounded set and g(X) ⊆ f(X), satisfying
the condition

(3) M(g(x), g(y), ϕ(t)) ≥M(f(x), f(y), t)

for some continuous function ϕ : (0,∞) → (0,∞), which satisfies ϕ(t) < t for all
t > 0. Then f and g have a unique common fixed point.

Proof. Let x0 ∈ X be an arbitrary point. Since g(X) ⊆ f(X), there exists a x1 ∈ X
such that g(x0) = f(x1). By induction, a sequence {xn} can be chosen such that
g(xn) = f(xn+1).

Let us consider nested sequence of nonempty closed sets defined by

Fn = {gxn, gxn+1, . . .}, n ∈ N.

We shall prove that the family {Fn}n∈N has b-fuzzy diameter zero.
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In this sense, let r ∈ (0, 1) and t > 0 be arbitrary. From Fk ⊆ g(X) it follows
that Fk is a bF-strongly bounded set for arbitrary k ∈ N. It means that there exists
t0 > 0 such that

(4) M(x, y, t0) > 1− r for all x, y ∈ Fk.

From limn→∞ ϕn(t0) = 0 we conclude that there exists m ∈ N such that
ϕm(t0) < t. Let n = m + k and x, y ∈ Fn be arbitrary. There exist sequences
{gxn(i)}, {gxn(j)} in Fn (n(i), n(j) ≥ n i, j ∈ N) such that limi→∞ gxn(i) = x
and limj→∞ gxn(j) = y.

From (3) we have

M(gxn(i), gxn(j), ϕ(t)) ≥M(fxn(i), fxn(j), t) = M(gxn(i)−1, gxn(j)−1, t).

Thus, by induction we get

M(gxn(i), gxn(j), ϕ
m(t)) ≥M(gxn(i)−m, gxn(j)−m, t)

Since ϕm(t0) < t < bt and because M(x, y, ·) is a b-non-decreasing function, from
the last inequalities it follows that

(5) M(gxn(i), gxn(j), t) ≥M(gxn(i), gxn(j), ϕ
m(t0)) ≥M(gxn(i)−m, gxn(j)−m, t0)

As {gxn(i)−m}, {gxn(j)−m} are sequences in Fk from (4) it follows that

M(gxn(i)−m, gxn(j)−m, t0) > 1− r

for all i, j ∈ N.
Finally, from previous and (6) we conclude that M(gxn(i), gxn(j), t) > 1 − r

for all i, j ∈ N. Taking liminf as j →∞ we get that

M(gxn(i), y, bt) > 1− r

for all t > 0 and x, y ∈ Fn.

Taking liminf as i → ∞ it follows that M(x, y, b2t) > 1 − r, for all t > 0 for
all x, y ∈ Fn. From previous it follows that M(x, y, t) > 1 − r, for all t > 0 for all
x, y ∈ Fn i.e. family {Fn}n∈N has b-fuzzy diameter zero.

Applying Theorem 1 we conclude that this family has nonempty intersection,
which consists of exactly one point z. Since the family {Fn}n∈N has b-fuzzy diameter
zero and z ∈ Fn for all n ∈ N then for each r ∈ (0, 1) and each t > 0 there exists
n0 ∈ N such that for all n ≥ n0 hold

M(gxn, z, t) > 1− r.

From the last it follows that for each r ∈ (0, 1) hold

lim
n→∞

M(gxn, z, t) > 1− r.
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Taking that r → 0 we get
lim
n→∞

M(gxn, z, t) = 1

i.e. lim
n→∞

gxn = z. From the definition of sequence {fxn} it follows that lim
n→∞

fxn =
z.

Let us prove that z is a common fixed point of mappings f and g. From
condition (1) we have that for all t > 0 holds

M(f(g(xn)), g(f(xn)), Rt) ≥M(f(xn), g(xn), t).

For previous we get that for all t > 0 holds

M(f(g(xn)), g(f(xn)), Rt) ≥ T
(
M

(
f(xn), z,

t

b

)
,M

(
z, g(xn),

t

b

))
.

Since lim
n→∞

fxn = lim
n→∞

gxn = z, taking lim inf when n → ∞ and using

Lemma 3 we get that for all t > 0 it holds that

lim inf
n→∞

M(f(g(xn)), g(z), bRt) ≥ 1

i. e.
lim inf
n→∞

M(f(g(xn)), g(f(xn)), t) = 1.

Similarly, using Lemma 3 we can prove that for all t > 0 it holds that

lim sup
n→∞

M(f(g(xn)), g(f(xn)), t) = 1.

From previous we get that for all t > 0 it holds that

lim
n→∞

M(f(g(xn)), g(f(xn)), t) = 1.

Since g is continuous, we get that

lim
n→∞

f(g(xn)) = lim
n→∞

g(f(xn)) = g( lim
n→∞

f(xn)) = g(z).

From the inequalities (3) follows that

M(g(xn), g(g(xn)), ϕ(t)) ≥M(f(xn), f(g(xn)), t)

for all t > 0. Similarly as in the previous part, using Lemma 3 and taking lim inf
(lim sup) as n→∞, we get

M(z, g(z), ϕ(t)) ≥M(z, g(z), t)

for all t > 0. Applying Lemma 5 we conclude that g(z) = z.

Since g(X) ⊆ f(X), there exists z1 ∈ X such that f(z1) = g(z) = z. From
starting condition we have that

M(g(g(xn)), g(z1), ϕ(t)) ≥M(f(g(xn)), f(z1), t)
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holds for all t > 0. Using Lemma 3 and taking lim inf (lim sup) as n→∞, we get

M(z, g(z1), ϕ(t)) ≥M(z, z, t) = 1

for all t > 0. From ϕ(t) < t
b , i.e. t > bϕ(t), since M(x, y, ·) is b-nondecreasing it

follows that M(z, g(z1), t) ≥ M(z, g(z1), ϕ(t)) = 1 for all t > 0. From previous it
follows that M(z, g(z1), t) = 1 for all t > 0. i.e. g(z1) = z.

For arbitrary t > 0 there exists t1 > 0 such that t = Rt1. From f(z1) = z,
g(z1) = z we get

M(g(z), f(z), t) = M(g(z), f(z), Rt1) = M(g(f(z1)), f(g(z1)), Rt1)

≥M(f(z1), g(z1), t1) = M(z, z, t1) = 1

from where it follows that f(z) = g(z) = z.

Let us prove that z is a unique common fixed point. For this purpose let us
suppose that there exists another common fixed point, denoted by u. From the
starting condition, for all t > 0 it follows that

M(g(z), g(u), ϕ(t)) ≥M(f(z), f(u), t)

i.e.
M(z, u, ϕ(t)) ≥M(z, u, t).

Finally, applying Lemma 5 it follows that z = u. This completes the proof.

Example 1. Let (X,M, T ) be a complete b-fuzzy metric space d(x, y) = |x − y|
with M(x, y, t) = e−

|x−y|2
t and X = [0,+∞) ⊂ R. Let

f(x) = 2x, g(x) =
x

1 + x
, g(X) = [0, 1) ⊂ X = f(X)

and

ϕ(t) =

{
t

3+t , 0 < t ≤ 1
t
4 , t ≥ 1

We shall prove that all the conditions of Theorem 2 are satisfied, too. Because
g(f(x)) = 2x

1+2x and f(g(x)) = 2x
1+x we conclude that f(x) and g(x) are not com-

muting mappings, but they are R-weakly commuting for R = 1. We have that for
all x ≥ 0 follow

|f(g(x))− g(f(x))| = 2x2

(1 + x)(1 + 2x)

and

|f(x)− g(x)| = x+ 2x2

1 + x
.

Since 2x2

(1+x)(1+2x) ≤
x+2x2

1+x and e−s is decreasing function, we have that

M(f(g(x)), g(f(x)), t) ≥M(f(x), g(x), t)
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for all x, t ≥ 0 i.e. f(x) and g(x) are R-weakly commuting for R = 1.

We shall prove that the condition (3) is satisfied, too. Note that for all x, y ∈
X we have that 1

(1+x)2(1+y)2 ≤ 1. We will consider two possibilities.

If 0 < t ≤ 1, since 3 + t ≤ 4, we have∣∣∣ x−y
(1+x)(1+y)

∣∣∣2
t

3+t

=
(3 + t)|x− y|2

t(1 + x)2(1 + y)2
≤ 4|x− y|2

t
.

Since e−s is decreasing function, it follow that, for 0 < t ≤ 1

M(g(x), g(y), ϕ(t)) ≥M(f(x), f(y), t).

If t ≥ 1, we have∣∣∣ x−y
(1+x)(1+y)

∣∣∣2
t
4

=
4|x− y|2

t(1 + x)2(1 + y)2
≤ 4|x− y|2

t
.

Since e−s is decreasing function, it follow that, for t ≥ 1

M(g(x), g(y), ϕ(t)) ≥M(f(x), f(y), t).

From the last inequalities we conclude that the condition (3) is satisfied. Since
ϕ satisfies all the conditions of Theorem 2, we get that f(x) and g(x) have a unique
common fixed point. It is easy to see that this point is x = 0.

One consequence of previous theorem is the following corollary.

Corollary 1. Let (X,M, T ) be a complete b-fuzzy metric space with b > 1, which
satisfies (2). Let g be a continuous function on X, such that g(X) is bF-strongly
bounded set and g(X) ⊆ X, satisfying the condition

(6) M(g(x), g(y), ϕ(t)) ≥M(x, y, t)

for some continuous function ϕ : (0,∞) → (0,∞), which satisfies ϕ(t) < t
b for all

t > 0. Then g has a unique fixed point.
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