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Abstract: In this paper, the new mathematical correlation of two quantum systems that were initially
allowed to interact and then separated is being formulated and analyzed. These correlations are
illustrated by many examples and are also connected with fractals at a certain level. The main idea
of the paper arises from the EPR paradox, the paradox of Einstein, Podolsky, and Rosen that occurs
when the measurement of a physical observable performed on one system has an immediate effect
on the other separate system being entangled with it. That is a physical phenomenon, especially
when the particles are separated by a large distance. In this paper, we define distant correlations as
the advanced method for the exact interpretation of strong connection and influence among those
particles even when they are widely separated. On the given topological space (X, τ), we define
a notion of τ-metric such that the set X is a τ-metric space and we prove some properties of these
spaces. By using this new proposed model, we nullify the contradiction that appears in the EPR
paradox. An illustrative example involving fractals is given. This innovative mathematical approach
to this physical phenomenon may be attractive for future research in the field of quantum physics.

Keywords: τ-metric; fractals; distant correlations; EPR paradox; quantum physics; topological spaces

1. Introduction

In physics, the principle of locality implies that an object or an event at one position
is directly influenced only by its proximate surroundings and therefore it cannot cause
an instantaneous action at another point. However, in microscopic physics of quantum
entities the result of a measurement on one particle can have a simultaneous effect on
another entangled particle, regardless of their distance, which is in the contradiction
with the principle of locality and with classical macroscopic physics. This fact is one
of the main reasons for the appearance of the famous paper called the EPR paradox by
Einstein, Podolsky, and Rosen [1], which implies that quantum physics may not be a
complete theory and that maybe there exists some additional unrevealed variable witch
integrates both microscopic and macroscopic physic laws. Many scientific papers devoted
to the investigation of this subject appeared and large number of various analyzes of the
argument have been offered. Among the first scientists who gave the initial inspiration
and also pointed out the importance of resolving some contradictions and uncertainties in
quantum mechanics was Popper [2]. Fine [3] focuses on Einsteins philosophy of science and
establishes his own aspects of realism and antirealism. In addition, Hellman [4] reviewed
certain arguments of EPR paradox and clarified some aspects of the “hidden variable”
notion. See Krips [5,6] for further consideration of some additional paradoxes that appear
in physics on small scales. One of the crucial contributors of understanding the behavior of
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quantum particles was Bohr [7] who established the fundamental probabilistic character
of quantum measurement. For future investigation, see also Bell [8], Schrodinger [9,10],
Einstein [11,12] and many others. Moreover, in last few decades, based on quantum
sets [13,14], both fractal and fractional calculus have been deeply exploited in high energy
physics. Fractals have been widely used in various applications in science and technology,
especially in nanotechnology [15,16]. By using fractal and fractional calculus some of the
fundamental physical theories can be explained with considerable smoothness [17,18].
The aim of this paper is to demonstrate that the proposed mathematical model may be
applied in quantum physics in order to describe quantum correlations and also to make a
connection and possible implementation of the presented results on the conceptive fractal
configuration of the spacetime [19,20]. Much research in the field of quantum physics found
that the configuration of space has a topological structure and also determined that some
of the most fundamental properties of subatomic particles are topological. Topology is of a
fundamental importance even to systems in classical mechanics. The first relation between
topology and quantum physics was Dirac’s [21] attention to resolve the quantization of
electric charge. Kauffman and Lomonaco [22] studied the relationship between topological
and quantum entanglement. Bakke, Carvalho and Furtado [23] verified the influence of
the topology in EPR correlations of cosmic strings. Epperson and Zafiris [24] suggested
great importance of implementing topological technics in quantum physics world. They
explained a fundamental meaning of mathematical topological laws in quantum particles
correlations. In this paper, we discuss a mathematical aspect of the EPR paradox, quantum
entanglement and quantum correlations by using special topological spaces with defined
metrics and properties not satisfying generally any of the separation axioms Ti, i = 0, 1, 2
(for the separation axioms in topological spaces see for example Engelking [25]). The point
of the paper is to present (X, τ) topological space with specifically defined properties in
order to apply the suggested model to quantum particles relations.

The Characterization of τ-Metric

In this section, we introduce new metrics and analyze topological spaces equipped
with such specific metrics in order to apply it in the later sections on particular physical
manifestations on small scales. For some basic definitions and concepts of topological
spaces, please see [25–30].

Definition 1. Let X be a topological space, x, y some points in X and β(x), β(y) their neigh-
bourhood systems, respectively. The relation of density of space in a point we denote with Γ and
define as:

xΓy
de f
= β(x) ⊂ β(y). (1)

If xΓy, we say that the space X has bigger density in the point y than in x.

Obviously, Γ is a partial order relation on X.
If for x, y ∈ X it holds that xΓy, where X is a topological space, then for A ⊂ X we

have that:
y ∈ A implies x ∈ A, (2)

where A is the adherence of A (x ∈ A if and only if for every open set U containing x,
U ∩ A 6= 0).

This means that the points that can be comparable according to density are connected
in a way that, when ever one of those points is in the adherence, or by the language of
physics, in the “influence” of a field of some arbitrary set A ⊂ X, then the other point is
also in the influence of the same field. In that sense, the adherence or the influence of the
given set, identifies different points as one object in the topological space (X, τ). It means
that all topological properties of the space X in the point y are the same as in x.
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Definition 2. Let (X, τ) be a topological space and A ⊂ X × X the set of all ordered pairs of
elements x, y ∈ X which are not comparable in Γ, meaning that:

A = X× X− (Γ ∪ Γ−1). (3)

The function p : A ⊂ X× X → (0,+∞) is τ-metric on X if it holds:

1. p(x, y) = p(y, x), for every (x, y) ∈ A
2. p(x, y) ≤ p(x, z) + p(z, y) for every ordered pairs (x, y), (x, z), (z, y) ∈ A.

Remark 1. For every x ∈ X is xΓx, meaning that A∩ ∆ = ∅, so the set A is a proper subset of
X× X. The set A is nonempty if it contains an ordered pair (x, y) of different elements x, y ∈ X,
satisfying that there is at least one neighborhood of x which does not contain y and at least one
neighborhood of y which does not contain x. If X is T1-topological space, we have that Γ = Γ−1 = ∆
and so A = X × X − ∆. In this case we can extend τ-metric p in order to obtain metrics on X.
Indeed, for every ordered pair (x, x) ∈ ∆ we put p(x, x) = 0. So, τ-metric is nontrivial on a wider
class of topological spaces than T1.

Example 1. Every metric function d on a set X provided with topological structure τ, induces
τ-metric on X. Indeed, we can consider the function d|A = p. Obviously, this function satisfies all
conditions of τ-metric.

Example 2. Let us consider the left cone topology on the set of all real numbers R. Open sets are
the set R and the collection of all open left cones, i.e., the intervals (−∞, a), a ∈ R. It is easy to see
that this collection is a topology. For every x, y ∈ R such that x ≤ y, holds that β(y) ⊂ β(x), and
so we have that xΓy. Therefore, every two elements of the set R are comparable in Γ and A = ∅.

Proposition 1. In every topological space X holds that:

( f or all x)( f or all y)({x} ⊂ {y} if and only if β(x) ⊂ β(y)).

Proof. Let {x} ⊂ {y} and Ux ∈ β(x). Since x ∈ {x} ⊂ {y}, we have that x ∈ {y} and
therefore y ∈ Ux, which means that Ux ∈ β(y). We conclude that β(x) ⊂ β(y). Assume that
β(x) ⊂ β(y) and z ∈ {x}. Every Uz ∈ β(z) contains the point x and so Uz ∈ β(x) ⊂ β(y).
Therefore Uz ∈ β(y) and so y ∈ Uz, which leads to z ∈ {y}.

Remark 2. In Definition 1, the condition xΓy can be replaced with the equivalent condition
β(x) ⊂ β(y).

Definition 3. p-open ball denoted by Kp(x, ε), with the center x ∈ X and radius ε > 0 we define
as:

Kp(x, ε) = {y|(y, x) ∈ A and p(x, y) < ε.} (4)

Remark 3. Since for every x ∈ X holds that xΓx, the center of each p-open ball Kp(x, ε) is not the
element of the ball.

Example 3. Let X be an arbitrary set containing more than one point and M a nonempty subset of
X with more than one element, such that X −M 6= ∅. Define IntA = A ∩M for every proper
subset A ⊂ X and let IntX = X. The interior operator defined this way satisfies convenient
properties and defines a topology τ on X where open sets are X and all subsets of M. The set M×M
is the set of all ordered pairs of elements from X which are incomparable in Γ. Indeed, for every
two elements x, y ∈ X − M we have that β(x) = β(y) and so it holds that xΓy and yΓx. So,
every two elements from X −M are comparable in Γ. Let x ∈ M and y ∈ X −M. Since every
neighborhood of y is at the same time the neighborhood of x, we have that yΓx. Finally, every two
different elements of M are incomparable in Γ due to the fact that topology on M is discrete. Now,
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assume that there is a defined metric d on X. The restriction p = d|M×M−∆ is τ-metric on X. If
x ∈ X−M, then Kp(x, ε) = ∅. If x ∈ M, then Kp(x, ε) = K(x, ε) ∩ (M− {x}).

As well as in metric spaces, we may formulate the following.

Definition 4. Let (X, τ) be a topological space and p a τ-metric on X. p-neibourhood of a point
x ∈ X is every set Up(x) which contains x and at least one p-open ball centered in x. So, Up(x) is
a p-neibourhood of x ∈ X, if there is ε > 0 such that {x} ∪ Kp(x, ε) ⊂ Up(x) holds.

Definition 5. Let (X, τ) be a topological space and p a τ-metric on X. A p-open set is a set U ⊂ X
which is a p-neibourhood of all its points.

Theorem 1. Let (X, τ) be a topological space, p a τ-metric on X and U a p-open set. Then:

U = ∪x∈U [{x} ∪ Kp(x, εx)]. (5)

Proof. Indeed, for every x ∈ U, there is a p-open ball Kp(x, εx) such that Kp(x, εx) ⊂ U.
Therefore, we have that:

U = ∪x∈U{x} ⊂ ∪x∈U [{x} ∪ Kp(x, εx)] ⊂ U,

which leads to the conclusion.

Theorem 2. Let (X, τ) be a topological space and p a τ-metric on X. The collection τp of p-open
sets satisfies:

(a) If U1, U2 ∈ τp, then U1 ∩U2 ∈ τp,
(b) If Ui ∈ τp, i ∈ I, then ∪iUi ∈ τp.

Proof. Let U1, U2 ∈ τp and x ∈ U1 ∩U2. Since U1 is p-open, we have that Kp(x, ε1) ⊂ U1.
Similarly, it holds that Kp(x, ε2) ⊂ U2. Let ε = min(ε1, ε2). Obviously, Kp(x, ε) ⊂ U1 ∩U2.
Since U1 ∩U2 is a neighborhood of all its points, we conclude that it is p-open. (Using
the induction we may prove the theorem for any finite number of p-open sets. Since
∩i∈∅Ui = {x | ( f or all i)(i ∈ ∅⇒ x ∈ Ui} = X we conclude that X is a p-open set.)

Now, let x ∈ U = ∪iUi, where Ui, i ∈ I, are p-open. There is an index i ∈ I, such that
x ∈ Ui, and a p-open ball Kp(x, ε) ⊂ Ui ⊂ U. The fact that x is arbitrary concludes the
proof. (In the case that U is an empty set, for example if I = ∅, it is p-open set in metric
space X. Indeed, since ∪i∈∅Ui = {x | (∃i)(i ∈ ∅ ∧ x ∈ Ui)} = ∅ we conclude that ∅ is a
p-open set.)

Theorem 3. Let (X, τ) be a topological space, p a τ-metric on X and ∆ the collection of all subsets
of X which contains only mutually incomparable elements in Γ. The collection τp |X̃= {U ∩ X̃ |
U ∈ τp} is a topology on X̃ induced with p, where X̃ is any maximal element in ∆ regarding the
inclusion order.

Proof. The collection ∆ is obviously ordered by inclusion where every chain has an upper
bound. So, according to Kuratowski-Zorn Lemma [25], there is a maximal element X̃ in
some maximal chain. Let us prove that τp |X̃= {U ∩ X̃ | U ∈ τp} is a topology on X̃
induced by the τ-metric p, where the basis is {Kp(x, εx) ∩ X̃, x ∈ X̃}.

To prove that, let us choose some y ∈ Kp(x, εx) ∩ X̃. The points x and y are incompa-
rable in Γ and it holds:

Kp(y, εy) ∩ X̃ ⊂ Kp(x, εx) ∩ X̃, (6)
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where εy = εx − p(x, y). Indeed, if z ∈ Kp(y, εy) ∩ X̃, then z is incomparable with x, so
there is p(x, z). Since the triangle relation p(x, z) ≤ p(x, y) + p(y, z) for the τ-metric p
holds, we have that z ∈ Kp(x, εx) ∩ X̃. It holds:

({x} ∪ Kp(x, εx)) ∩ X̃ ∈ τp |X̃ . (7)

According to (7) and Theorem 3, we conclude that τp |X̃ is a topology on X̃.

Remark 4. Generally, the collection τp of p-open sets is not always a topology on X. This is because
{x} ∪ Kp(x, εx) /∈ τp.

2. The Theoretical Experiment

In the previous section the distant correlations in the form of τ-metric are defined
and mathematically formalized in order to understand the actual paradoxical behaviour
of the “entangled” particles when they are separated at a large distance. The notion of
quantum entanglement is at the core of the discrepancy among classical and quantum
physics. For example, it appears naturally when two particles are created at the same
point and instant in space. To clarify the central idea of this research we illustrate the
well known EPR paradox as the theoretical experiment, that occurs when measurement
of a physical observable performed on one system has an immediate effect (the measure
could be predicted) on the other separate system being entangled with it. This is a typical
example of the entangled particles that are being separated.

The experiment can be interpreted by using electron-positron pairs. Let us assume
that there is a certain source which emits electron-positron pairs, such that the electron
is sent to the position A and the positron sent to position B. As it is known in quantum
mechanics, we may organize our source so that each emitted pair occupies a quantum
state called a spin singlet. In this case we say that these particles are entangled. This can
be recognized as a quantum superposition of two states, which we call state I and state II.
In state I, the electron has spin pointing upward along the z-axis (+z) and the positron
has spin pointing downward along the z-axis (−z). On the other hand, in state II, the
electron has spin −z and the positron has spin +z. The fact is, that it is impossible without
measuring to know the definite state of spin of either particle in the spin singlet (It refers
to a system in which all electrons are paired, that is, whose overall spin quantum number
s = 0.) Along z-axis we can obtain one of two possible outcomes: +z or−z. Suppose we get
+z. Consequently, the quantum state of the system collapses into state I. In this particular
case, subsequent measurement of the spin along the z-axis in the destination B will be
−z with probability 1. There are numerous scientific articles that more briefly investigate
various versions of this experiment. The paradox is in the simultaneous synchronized
behaviour of the separated entangled particles even at extremely large distances, which
contradicts the Einstein relativity theory. Please see for example [31,32].

In the next section, we intend to demonstrate the possible applications of the proposed
τ-metric consolidated and defined in the relevant topological space in which we will
observe and discuss the entangled particles. This approach will hopefully provide more
clear and understandable perception of the behaviour of the electrons in the singlet in the
formal mathematical sense.

3. Results and Discussion
3.1. The Distant Correlations and the EPR-Paradox

Let X be some set containing electrons as physical objects having the defined topolog-
ical structure equipped with the half-metric defined as in Definition 2. Let us observe a
pair of electrons from the space X that we consider as one physical object. At this point, we
need to precise once again in what sense we use the term “one object”; we say that two
electrons present the same physical object if it holds: whenever one of them is in the field
of influence of some source, then it is the other one, too. So, two electrons present the same



Fractal Fract. 2022, 6, 104 6 of 10

object if one of the electrons interact with any source from the space X, then the other one
also interacts with the same source and vice versa. This interpretation is strictly topological
(note that the degree of the interaction need not to be the same for both electrons for the
reason that it depends of the distance from the source and not from the properties of the
field). So, in topological terms, two electrons from the set with the topological structure
present the same object if those electrons have the same neighborhood systems. The source
of influence described in the EPR paradox “sees” the entangled particles as one object. It
seems quite clear that metric defined by (2) is accordant with the behavior of the electrons
from the experiment.

Note that it is quite clear that such space cannot be metrizable, meaning that it does
not exist any metrics which induces the defined topology. Indeed, assume that such
metrics exists, then the topological space X had to be T1 so that every set of points with
the same neighborhood system in the space would be reduced only to exactly one point.
Consequently, there would exist not one pair of electrons that we might consider as one
object in the sense that we explained in details previously. (At this point it is crucial to
remind the reader of the fact that every metric space is at least T1 topological space.)

In the usual settings, we use conventionally certain notion of distance in order to
measure the length between physical objects and generally we assume that the observed
space is a metric space with the defined metrics (distance) between points. Commonly, we
use Hilbert spaces, where the usual distance between points is being defined. However,
the main idea of this paper is that, on a micro-level this usual metric does not exists.

Therefore, we formalized certain type of “distance” on the given topological space
among physical objects belonging to the set X, such that the distance among the objects
that are having the same neighbourhood systems is not defined and does not exist, and
among every other pair of physical objects in the set X, it does exist, it is symmetrical, and
it satisfies the triangle relation, according to the Definition 2. If we apply this onto EPR
paradox, we can say that the distance among particles which are under the influence of the
same source (that are in the adherence of the same set) does not exist, and among particles
that are under different influence sources exists (among particles that belong to the different
adherence sets) according to the Definition 2. Thus, in the context of the EPR paradox
experiment, this “half-metric” does not recognize the distance between the pair of objects
(in this particular case particles in the singlet) which are both the field of the same source of
influence. In that sense, the adherence or the influence of the given set, identifies different
points as one object in the topological space and thus, according to the definition of the
τ-metric, the distance among them does not exist. Conclusively, this is a mathematically
quite precise form for overcoming the EPR paradox. In addition, note in the context of EPR
paradox that, if there appear some new source of influence which differs from the initial
one, that interacts with one electron from singlet, then the behavior of entangled electrons
stop being connected and simultaneous, which is also directly follows from the definition
of τ-metric. Indeed, the distance among the electron pair appears in this case, since they
are not anymore the same object in topological sense, meaning they don’t have the same
neighborhood systems, meaning they do not belong to the same source of influence. This
proposed model is not paradoxical and does not contradicts the Einstein relativity theory.

In next paragraph, we illustrate some ideas at micro-level that can be applied in certain
domains involving fractals.

3.2. Fractal Application

Quantum mechanics has a fascinating bond with fractals. In fact, on the level of atoms
and electrons, there are regular patterns that do not support fractal laws. However, when
adding a magnetic field the formation of the electrons’ positions catches a fractal form
called Hofstadter’s butterfly [33]. Electrons in the fractal configuration overtake a fractal
design with a dimension of about 1.58. That means that their energy levels manage to
split up from a continuous set (electrons have all energies within some scale) to one with
clusters. This fact opens a whole new line of analysis and it opens different questions
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such as for example what it actually means for electrons to be constricted in non-integer
dimensions? Fractals have already established an important role in numerous applications
and these results may lead to a great impact on research at the quantum scale. See also
fractal behavior of the electrons under the influence of the magnetic field of topological
constructions mentioned in previous subsection and the reference [34].

Since the main idea of the paper is to propose the distant relation solution of certain
physical appearances, it is of fundamental importance to emphasize the connection between
metric spaces and fractals. Generally, we use the Euclidian classical geometry, where the
usual distance between points is being defined which describes smooth ideal shapes in
the nature. However, there are shapes in the nature more complicated than the normal
Euclidean forms, so we need fractal generalization and fractal topology and measure in
order to characterize those shapes. Many scientific papers devoted to fractal scaling in
Space appeared recently, such as [35].

For future analysis and implementations in macrophysics, possibly the most inter-
esting characteristic of fractals which should be observed thoroughly is the self-similarity.
Indeed, the essence of the electron-positron behavior in the EPR paradox is self-similarity.
Finally, for the reason of the topological aspect of this research, we give next example which
shows explicit fractal application of the proposed topological space on micro-level and
with the defined τ−metric.

Example 4 (Cantor set). Cantor sets can be obtained geometrically by a removal of a portion
(basic Cantor set is obtained by removing the middle one-third set) of the closed unit interval [0,
1] infinitely. The set of points remained in the unit interval after this removal process is over is
called the Cantor set. The dimension of such a set is not an integer value. In fact,it has a fractional
dimension, making it by definition a fractal. The Cantor set is an example of an uncountable set with
measure zero and has potential applications in various branches of mathematics such as topology,
measure theory, dynamical systems and fractal geometry. It is also an example of a perfect, nowhere
dense subset of R. The Cantor set, firstly configured strictly under mathematical investigation,
recently has become almost perfect model for a nonlinear dynamical systems to the distribution of
galaxies in the Universe. Indeed, it finds famous place in mathematical analysis and its applications,
e.g., see Devaney [36], Hutchinsion [37], Schoenfeld and Gruenhage [38]. Let us recall that the
Cantor set is the prototype of a fractal.

Theorem 4. Any subset E of the real line R which is compact, totally disconnected and perfect is
homeomorphic to the Cantor middle one-third set.

Since we indicated that the homeomorphic objects can be considered as equal, the
proposed metric can be applied obviously on fractals. We will refer now to the research
paper raised and analyzed by Naschie [39]. He regarded the space-time as a Cantor set
with a very high dimensionality, based entirely on topology and geometry which he called
Cantorian. In fact, this is a proper example of the implementation of our mathematical
model on this micro-level space-time. Indeed, Cantor set is a topological set. Next, accord-
ing to Remark 1 and the Example 1, the τ-metric can be induced on such space. Thus, we
obtain clear illustration of our results discussed in the paper. Further, it is interesting to
analyze the results from [39] which proves that partially ordered sets (posets) can be drawn
to model space-time and may be used advantageously in high energy space-time physics,
which coincides with the obtained main results. In addition, both in [39,40] the authors
present a substantially new approach to quantum gravity and particle physics based on the
idea that space-time is basically a large infinite-dimensional but hierarchical, disconnected
and thus non-differentiable Cantor Set, which presents pure concretization of our general
results proposing topological spaces on micro-level equipped with the τ-metric. Cantor
sets are at the heart of modern mathematics, but have never been used explicitly to model
space-time in physics, until [39,40] and similar papers therein.
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4. Conclusions

In this paper, we introduced a special form of partial metric spaces, researched their
properties and suggested some applications in certain domains of physics. The idea for this
model appeared naturally from the remarkably increased interaction between mathematics
and quantum physics. Especially in the last few decades, many studies devoted to the topol-
ogy applications in physics occurred. As the result, many mixed concepts were developed,
such as for example, topological quantum field theory [41,42]. In accordance and parallel
with this fact, the use of fractals increased rapidly in the domain of quantum physics: it
is proved that if fractality of the Brownian trajectories [43,44] leads to standard quantum
mechanics, then the fractality of the Levy paths [45] leads towards fractional quantum
mechanics. Further, the tempered stable isotropic Levy processes, also called relativistic
stable processes and its “generalized fractionality properties” lead towards relativistic quan-
tum mechanics in some sense. There are a lot of references on them, such as [46–48]. The
fractional quantum mechanics has been developed trough the new fractional path integrals
approach. A fractional generalization of the Schrodinger equation [49] has been discovered.
The new relationship between the energy and the momentum of the nonrelativistic frac-
tional quantum-mechanical particle has been established. A fractional generalization of
the Heisenberg uncertainty relation has been found [50]. In [51], the authors developed
and analyzed a new fractal–fractional operational matrix for orthonormal normalized
ultraspherical polynomials that have significant importance in physics. At the end, we
illustrated the obtained topological results with the fractal example, that mathematically
describes the nature of matter and space on quantum level. In addition, see [52,53] for more
additional illustrative examples describing fractal employment in physics on both micro
and macro level and [54] for the topological and dynamical fractal systems with finitely
many maps such as affine or projective, including the role of contractive functions on the
existence of an attractor (as the illustration, see Figure 1, obtained as the result of applying
a fractal homeomorphism and constructed by using affine transformations, from [54]).

Figure 1. Fractal homeomorphisms.

However, in spite of the strong efforts in developing one comprehensive mathematical
model which includes all the aspects of quantum theory, the definite axiomatization of
quantum topology still has not been attained. The idea of the paper is to step towards
that direction and to provide potentially attractive model to researchers of the entangled
particles phenomenon. Although diverse according to the starting viewpoints, rigor math-
ematics with the universal properties of its structures and an intuitive and experimental
physics in mutual collaboration produced most surprising and inspirational results which
gave rich ground yet to be explored.
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28. Ćirić, L.J. Some Recent Results in Metrical Fixed Point Theory; University of Belgrade: Beograd, Serbia, 2003.
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47. Rosiński, J. Tempering stable processes. Stoch. Process. Their Appl. 2007, 117, 677–707. [CrossRef]
48. Chen, Z.Q.; Kim, P.; Song, R. Sharp heat kernel estimates for relativistic stable processes in open sets. Ann. Probab. 2012, 40,

213–244. [CrossRef]
49. Rodnianski, I. Fractal solutions of the Schrodinger equation. Contemp. Math. 2000, 255, 181–188.
50. Rami, E.N.A. On the fractional minimal length Heisenberg-Weyl uncertainty relation from fractional Riccati generalized momen-

tum operator. Chaos Solitons Fractals 2009, 42, 84–88. [CrossRef]
51. Youssri, Y.H. Orthonormal Ultraspherical Operational Matrix Algorithm for Fractal–Fractional Riccati Equation with Generalized

Caputo Derivative. Fractal Fract. 2021, 5, 100. [CrossRef]
52. He, J.-H.; El-Dib, Y.O.; Mady, A.A. Homotopy Perturbation Method for the Fractal Toda Oscillator. Fractal Fract. 2021, 5, 93.

[CrossRef]
53. Wang, L.; Lu, X.; Liu, L.; Xiao, J.; Zhang, G.; Guo, F.; Li, L. Influence of MgO on the Hydration and Shrinkage Behavior of Low

Heat Portland Cement-Based Materials via Pore Structural and Fractal Analysis. Fractal Fract. 2022, 6, 40. [CrossRef]
54. Barnsley, M.; Vince, A. Developments in fractal geometry. Bull. Math. Sci. 2013, 3, 299–348. [CrossRef]

http://dx.doi.org/10.1038/s41567-018-0328-0
http://www.ncbi.nlm.nih.gov/pubmed/30886641
http://dx.doi.org/10.1142/S0217984920504217
http://dx.doi.org/10.1512/iumj.1981.30.30055
http://dx.doi.org/10.1090/S0002-9939-1975-0377836-4
http://dx.doi.org/10.1016/j.chaos.2008.09.059
http://dx.doi.org/10.1016/j.chaos.2009.03.094
http://dx.doi.org/10.1016/0370-2693(76)90277-X
http://dx.doi.org/10.1016/S0550-3213(98)00628-2
http://dx.doi.org/10.1016/0301-0104(89)80080-1
http://dx.doi.org/10.1080/00150193.2018.1474653
http://dx.doi.org/10.1073/pnas.79.14.4501
http://www.ncbi.nlm.nih.gov/pubmed/16593212
http://dx.doi.org/10.1016/j.spa.2013.06.012
http://dx.doi.org/10.1016/j.spa.2006.10.003
http://dx.doi.org/10.1214/10-AOP611
http://dx.doi.org/10.1016/j.chaos.2008.10.031
http://dx.doi.org/10.3390/fractalfract5030100
http://dx.doi.org/10.3390/fractalfract5030093
http://dx.doi.org/10.3390/fractalfract6010040
http://dx.doi.org/10.1007/s13373-013-0041-3

	Introduction
	The Theoretical Experiment
	Results and Discussion
	The Distant Correlations and the EPR-Paradox
	Fractal Application

	Conclusions
	References

