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Abstract. This paper investigates the phenomenon of the incomplete data samples by
analyzing their structure and also resolves the necessary procedures regularly used in
missing data analysis. The research gives a crucial perceptive of the techniques and
mechanisms needed in dealing with missing data issues in general. The motivation
for writing this brief overview of the topic lies in the fact that statistical researchers
inevitably meet missing data in their analysis. The authors examine the applicability of
regular approaches for handling the missing data situations. Based on several previously
published results, the authors provide an example of the incomplete data sample model
that can be implemented when confronting with specific missing data patterns.
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1. Introduction

One important issue which affects almost all datasets, despite major advances
in the design and collection of data is the incompleteness. This situation appears
when no data value is stored for some feature or an attribute in the dataset. The
incompleteness may occur for different reasons. For instance, missing data in a
survey may arise when there are no data for a respondent or when some variables
for a respondent are unknown because of refusal to provide or failure to collect the
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response. Also, missing data may occur if the data collection was not done prop-
erly or if the mistakes were made with the data entry caused by the researchers
themselves. Nevertheless, the problem of an adequate conduction of missing data
remains, regardless of whether missing data result from a participant disintegration,
a nonresponse item, or an irregular availability of respondents. See [10] or [20] for
a summarization of these questions. In addition, we must point out a significant
difference between ”the item nonresponse” and ”the unit nonresponse”. The item
nonresponse situation indicates that the respondent skipped one or more questions
in the analysis. On the other hand, the unit nonresponse appears when the respon-
dent refused to cooperate and consequently, all the resulting data are missing for
this respondent. Trough the existing literature we conclude that the methods used
for the item nonresponse and the unit nonresponse have been completely different.

In the last few years many articles devoted to the problem where practical miss-
ing data issues are discussed have appeared in various domains such as: economy,
politics, biomedical research, social sciences, medicine and engineering. Giannone
et al.(see [8]) developed a formal method for evaluating gross domestic product
(GDP) growth using the large datasets with missing observations monitored by
central banks. Schumacher and Breitung (see [34]) used a novel real-time dataset
with missing values for the German economy in the empirical application of fore-
casting the GDP growth. For more practical applications with incomplete samples
in various domains see for instance: [16] and [22] in economy and finance, [9], [3],
[17] and [26] in biomedical field, [5] in social sciences and [29] in astrophysics.

The prosperity of the missing data procedures available to scientists often pro-
duces uncertainty regarding to the choice of the eventual implemented method. Our
purpose is to discuss the applicability of general methods for dealing with missing
data and to review current advances associated with specific missing data tech-
niques. An additional intention of this paper is to propose a mathematical model
(Chapter 4) that can be used in certain missing data situations under specified
conditions.

2. An overview of the missing data classification

The task of classification of the data incompleteness type is a complex phenom-
ena and its attaintment depends upon several factors that need to be taken under
consideration. In the results obtained in [27] each data has certain likelihood of
being missing. Based on that assumption he classified the incomplete sample prob-
lems into three categories. The data are said to be missing completely at random
(MCAR) if the probability of being missing is the same for all cases. This prac-
tically means that the reasons of the data missingness are unrelated to the data,
meaning that the missingness has nothing to do with the person being questioned.
For example, a questionnaire might be lost in the post, or a blood sample might
be ruined in the laboratory for an unknown reason, so that certain portion of the
data will be missing simply because of some bad coincidences. An example which
describes clearly this type of the data is when we take a random sample of a popula-
tion. In this situation, each member of the population has an equal chance of being
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included in the sample. So, the unobserved data of members in the population that
were not included in the sample are MCAR. Basically, we may conclude that the
points that are missing in the MCAR case present a random subset of the data.
There is no systematic mechanism that makes some data more likely to be missing
than others. Although in the MCAR pattern we may consequently neglect many of
the difficulties that come about the data are missing, we must have in mind that
the MCAR model is a bit rare in the real life statistical researches. If we denote a
full matrix of the data in the analysis with X, it is obvious that it can be written
in the form X = {X, X̃}, where X are the observed and X̃ the missing data. Let
us define R as a matrix with the identical dimensions as X where:

Ri,j =

{
1, if the data is missing

0, otherwise.

Now, mathematical simplification of MCAR data type can be formulated as:

P (R
∣∣X, X̃) = P (R),

meaning that the probability of the realization of R matrix will not depend neither
on the observed nor on the unobserved data.

The second structure of the incompleteness is missing at random (MAR) and
it covers much wider class of the statistical survey settlements. In this case, the
probability of being missing is the same only within groups defined by the observed
data. As an example of this situation is the case of a survey where only younger
people have missing values measuring IQ. This fact indicates that the probability
of missing data referring to IQ is clearly related to age. Another example might be
the missing answers considering the body weight only in the women’s respondents,
so that we may consequently conclude that in this case missingness is related to
sex. Such data obviously are not MCAR. But, if however, we know the sex of the
respondents and if we can assume MCAR within the particular gender, then the data
are MAR. Another example of MAR is when we take a sample from a population,
where the probability of the data being inserted depends on some known property.
Basically, missing data are missing at random (MAR) when the likelihood of missing
data on a variable depends on some other measured variable in the model, but not
to the value of the variable with missing values itself. Nevertheless, the assumption
that the pattern is MAR is in practice very difficult to prove, so it is crucial to
implement the correlates of missingness into the chosen missing data procedure in
order to reduce bias and enhance the chances of satisfying the MAR assumption.
Definitely, MAR is more general situation and therefore more realistic than MCAR.
The largest number of the modern incomplete data tools generally start from the
MAR hypothesis. Mathematically reduced, this data type can be express as follows:

P (R
∣∣X, X̃) = P (R

∣∣X),

meaning that the realization of the R matrix will depend on the observed data only.
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The third concept is called missing not at random (MNAR), although in the lit-
erature we can often notice the term NMAR (not missing at random) for the same
model. MNAR indicates that the data likelihood of being missing differs for some
unknown reasons. The fact is that in this particular case the missing values on a
variable are dependent on the values of that variable itself, even after controlling all
other variables. MNAR is the most complicated case for the researches. Approaches
to overcome the MNAR situation are to reveal more detailes about the causes of
the missingness or to carry out what-if analyses in order to evaluate the measure
of subtleness of the results. The example which illustrates this type of the data is
when the answers refer to IQ are missing only at the respondents with low IQ. An-
other illustration of this structure is that when the survey participants with serious
depression are more likely to refuse to fulfill the answers referring to the depression
severity. More, in public opinion research the MNAR appears when persons having
infirm opinions answer less frequently. The difficulty with the MNAR structure is
that it is unfeasible to prove that outcomes are MNAR without recognize the values
that are missing. So, the trouble lies in the fact that the data incompleteness is
totally related to the unobserved data, meaning to the incidences or components
that are not evaluated and registered by the researcher.

The differences between these structures that are firmly described in [27] are cru-
cial for realize why some techniques will offer better results against the others. His
basic hypothesis lays in the fact that the researcher needs to provide the conditions
under which a missing data method can produce valid statistical interpretations.
Basic methods settle only the restrictive and sometimes implausible MCAR premise.
Therefore, in this case we must have in mind that there is a substantial probability
of obtaining biased estimates. Mostly, missing data are neither MCAR nor MNAR.
Instead, the probability that an observation is missing commonly depends on infor-
mation for that subject that is present, meaning that the reason for missingness is
based on other observed respondent characteristics. This situation defines obviously
the MAR model. For the additional description and comparison of the three basic
patterns of the missing data see [33].

In order to illustrate an example taken from the real data, we used the result
[18] given by Lai, who created the regression line and predict the voting intention
by using peoples’ age. Please see Figure 2.1 of scatter plots for the comparison of
different types of the missing data. The model that we define in the Chapter 4 can
be implemented on the MCAR type of the data.
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Fig. 2.1: Scatter plots of different types of missing data

3. The analysis of the incomplete sample regulation techniques

The crucial strategy in dealing with the missing data problem is to apply the
data analysis techniques which are robust to the deviations caused by the incom-
pleteness of the data set. This robustness of the technique practically means that
there exists reliance that some smooth and tolerable violations of the premises and
starting hypothesis will result in almost no bias or misinterpretation in the resulting
outcomes based on the population under analysis. On the other hand, it needs to be
pointed out that it is not achievable to use such methods in every situation. That
is why a large number of different handling procedures for the missing data issues
has been established.

According to [10], the methods for dealing with missing values can be evaluated
by three means: it should yield to an unbiased parameter estimate, one should be
able to obtain reasonable estimates of the standard error of confidence intervals
and it should have good statistical power. Traditional missing data methods such
as complete case analysis often produce bias and inaccurate conclusions. Similar
problems extend to single imputation techniques commonly thought of as improve-
ments over complete case methods. Research demonstrates that procedures such as
multiple imputation, which incorporate uncertainty into estimates for missing data,
often provide significant improvements over traditional methods.

Generally, the most commonly used procedures can be divided into three main
groups which are explained thoroughly in next paragraphs: Deletion methods, Sin-
gle Imputation Methods and Multiple Imputation methods.

3.1. Deletion methods

Listwise deletion stands for the basic method in overcoming the possible com-
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plications caused by the incompleteness of the data set. This procedure is also
called the Complete-case analysis. The conducting mechanism simply ignores all
the cases which obtain one or more missing values recognizing the variables that are
under examination and it is an inevitable part of many statistical softwares such as
STATA, SPS, SAS etc.

The advantage of the listwise deletion method is its reliability, accuracy and its
availability. Under hypothesis of MCAR data type, the listwise deletion produces
the standard errors and significance levels absolutely acceptable referring to the
reduced subset of data. But, we must note that these values are often higher when
implement this technique using all possible data.

In real life situations various challenges occur. For instance, when the number of
variables is huge and when more than a half of the original sample is obscured and
vanished. More, dealing with structures that are not MCAR, the listwise deletion
can severely bias the evalution of means, regression coefficients and correlations. It
is showed in the study of Little and Rubin (see [20]) that the bias of the estimated
mean grows together with the disparity among means of the observed and missing
variables. Also, the bias grows with the higher percentage of the data that are miss-
ing. Interesting investigation on the subject was performed by Schafer and Graham
(see [33]), where the bias of the complete-case analysis under MAR and MNAR
premises was analyzed. It is important to imply that there are settlements in which
listwise deletion can give better estimates than even the most refined and smooth
statistical mechanisms. Miettinen (see [21]) indicates that this method states for
the only access that guaranties that no bias is possible under any conditions. If we
go further trough literature, Enders (see [7]) claims that in most settlements, the
discommodities of listwise deletion far exceed its conveniences. Schafer and Graham
(see [33]) show that only if the incompleteness problem can be solved by eliminating
only a small part of the sample, then the technique may be solidly efficient. Vach
(see [35]) claims that ”there exists something like a critical missing rate up to which
missing values are not too dangerous”.

Another method, known as the Pairwise deletion (often called the available-case
analysis) tries to improve the waist data problem of listwise deletion. In listwise
deletion a case is ignored from a survey for the reason that it consists of one or more
missing values within the variables under analysis. Pairwise deletion appears in the
situations when statistical method accepts cases that involve some missing data.
The technique cannot include the specific variable with a missing value into analysis,
but it can still exploits the incomplete case when investigating other variables with
complete values. The advantage of this procedure is that it increments a power of
the survey. On the other hand, it has certain deficiencies. It presumes that the
incomplete sample is MCAR.

The illustration for understanding the mechanism of the method of pairwise
deletion is to take a dataset having following variables: age, gender, education,
income, and political affiliation. For each case in the dataset, the values of some of
the variables are more likely to be missing than others depending on the surveyee’s
sensitiveness to the survey questions. Let’s say we are interested in knowing if
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there is a correlation between age and political affiliation. Using pairwise deletion,
any given case may contribute to certain analysis but not to others, depending on
whether the needed data are available. Hence for our analysis in this example, all
cases with available data on age and political affiliation will be included regardless
of the missing values for other variables like gender, income or education. The
pairwise deletion is an alternative to the listwise deletion to mitigate the loss of
data.

3.2. Imputation methods

Other routine way that is frequently practiced among the statisticians is impu-
tation. This method basically replaces the missing values with certain estimated
values and then it analysis the complete data set such that it treats the imputed es-
timates as the original observed values. The procedures for the best choice of these
estimates differ and in this paragraph we describe the most exploited imputations
that are used in surveys. The imputation procedures are divided in two groups:
single imputation methods and multiple imputation methods.

3.2.1. Single imputation

In single imputation, missing values are replaced by a value defined by a cer-
tain rule. For example, Mean imputation is a smooth and simple method which
evaluates the mean of the observed values for the particular variable in all cases
that are not missing. Conceivably, the preference of this technique is that it retains
the same sample size and the same mean. On the other hand, mean substitution
reduces the variation of analyzed scores and this reduction in separate variables
is proportional to the number of missing data. Further, mean substitution may
significantly transform the values of correlations. The regression imputation is a
procedure which utilizes the values of other variables in order to forecast the missing
values in a variable. That is achieved by applying a regression model. Usually the
regression model is structured by using the observed data and eventually related to
the regression weights the missing values are projected and restored.

Next example of the single imputation is the Hot-deck imputation, the technique
which inserts a missing value from a randomly selected similar data set. The part of
the expression ”deck” suggests that the contributed values arrive from the identical
set as the initial data-set. The term ”hot” in the above phrase is for the reason of
data being instantly employed.

On the contrary to the last method, the cold-deck imputation chooses contrib-
utors data belonging to a different data-set. It is a term for a technique that fills a
missing values with values from some outward origin, such as some previous similar
survey. According to the above explanation, the reason for the expression ”cold-
deck” is evident.

3.2.2. Multiple imputation

Multiple imputation methods use the distribution of the observed data in order
to estimate multiple values that catch the oscillations around the true value. The
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idea of multiple imputation (MI) was first introduced by Rubin (see [28]), in which
each missing value is replaced with m > 1 simulated values prior to analysis. In
multiple imputation, there are three operational steps: imputation or fill-in phase,
the analysis phase and pooling phase. First phase constitute the complete data set
by filling in the missing values with the estimated values (using some of the conve-
nient statistical methods). This process of fill-in repeats several times. The analysis
phase, studies each of the obtained complete data sets by using a suitable statistical
method. Finally, in the third step the parameter estimates resulted from each of the
considered data set are then connected and analyzed so that the best conclusions
can are accomplished. Final phase aggregates all the results and reveals the best
summary estimate of the missing data. Clearly, it is obvious that the method of
multiple imputation is more unbiased that the single imputation method, because
of the use of multiple sets. That way we kind of ”washing” out the coincidences
that might occur. The disadvantage of this approach is the greater expanse of time
and effort comparing to single imputation.

The most familiar and widely exploited model-based method is the EM algo-
rithm described thoroughly by Dempster et al (see [4]). Also, high influential articles
given by Rubin (see [27]) and Little and Rubin (see [19]), gave the formulation of
EM algorithm and the dominated framework for dealing with missing data. Many
examples of EM algorithm were provided by Little and Rubin (see [20]) and Schafer
(see [30]).This iterative technique involves the expectation (E-part) and the max-
imization (M-part). It replaces missing data with estimated values, evaluates the
parameters, repeatedly estimates the missing values, re-estimates the parameters
and iterates until convergence (see [20]). Over the repetitions until convergence, we
conclusively obtain the missing values.

To simplify this approach, let us assume that the complete data-set consists
of X = {X, X̃} but that only X is observed. The complete-data log likelihood

function is then denoted by l(θ;X, X̃) where θ is the unknown parameter vector for
which we need to find the MLE (which is based on EM algorithm). Further, let

t = 1, 2, ... represents all parameters of distribution and fθt(X) and fθt(X̃) are the
assumed probability distributions at t-th iteration. First, the E-part is activated
and evaluates the expected value of l(θ;X, X̃) given the observed data X and the
current iteration parameter estimate θ.

Principally, we define

(3.1) Q(θ; θt) := E[l(θ;X, X̃)|X, θt] =

∫
l(θ;X, X̃)p(x̃|X, θt)dx,

where p(·|X, θt) is the conditional density of X̃ given the observed data X and
assuming θ = θt.

Next, the M-part of the analysis starts and it maximizes the expectation (3.1)
over θ. That is we put:

θt := max
{θ}

Q(θ; θt).
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We then set θt = θt. The two steps are iterated until the sequence of θt converges.

Recent work implies that multiple imputation and specialized modeling pro-
cedures offer universal methods for handling the missing data. It is proven that
they perform fine over many types of missing data structures. There are different
EM algorithms for different applications. Although this method provides excellent
parameter estimates, EM is not particularly good for hypothesis testing.

Nevertheless, the development of informational technology and the advances
in relevant statistical software make these methods available to the researchers
in various fields. For example, multiple imputation procedures under the normal
model are implemented in Schafer’s NORM program [30]. Detailed, step-by-step
instructions for running NORM are available in [12] (also see [11], [31], [32]). ML
methods, often called FIML (full information maximum likelihood) methods deal
with the missing data, do parameter estimation, and estimate standard errors all in a
single step. Available software for running this procedure are AMOS: [1], LISREL:
[15]; also see Mplus: [24]; and Mx: [25]. Basically, in 1987. Little and Rubin
published their classical book Statistical Analysis With Missing Data (see [19]),
and they established the groundwork for missing data software to be developed
over the next 20 years and beyond. See also [13] for recent review of software
handling missing data.

4. Mathematical model generated for the MCAR type of data

Let X1, X2, ... be independent identically distributed random variables and let us
assume that only observations at certain points are available. Denote the observed
random variables among {X1, . . . , Xn} by X̃1, ..., X̃Mn

. Here the random variable
Mn represents the number of the registrated random variables among the first n
terms of the sequence (Xn). Incomplete sample may be obtained, for example, if
every term of (Xn) is observed with probability p, independently of other terms,
and in this case Mn is binomial random variable. This refers to MCAR type of
missing data distribution. Now, let:

E (Xj) = m, D (Xj) = σ2 and S(n) =

Mn∑
j=1

X̃j .

We obtain the following results straightforward:

E (S(n)) =

∞∑
k=0

E
(
S(n)

∣∣Mn = k
)
· P{Mn = k}

=

∞∑
k=0

E

Mn∑
j=1

X̃j

∣∣Mn = k

 · P{Mn = k}

=

∞∑
k=0

E

 k∑
j=1

X̃j

 · P{Mn = k} =

∞∑
k=0

k ·m · P{Mn = k}.
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Conclusively we have:

(4.1) E (S(n)) = m · E (Mn) = E(X1) · E (Mn) .

Further we have that:

D (S(n)) = E (S(n))
2 − (E(S(n))

2
= E (S(n))

2 −m2 (E (Mn))
2

= E

Mn∑
j=1

X̃j

2

−m2 (E (Mn))
2

=

∞∑
k=0

E

{Mn∑
j=1

X̃j

2 ∣∣Mn = k

}
· P{Mn = k} −m2 (E (Mn))

2

=

∞∑
k=0

E

 k∑
j=1

X̃j

2

· P{Mn = k} −m2 (E (Mn))
2

=

∞∑
k=0

{
D

 k∑
j=1

X̃j

+

 k∑
j=1

E(X̃j)

2}
· P{Mn = k} −m2 (E (Mn))

2

=

∞∑
k=0

(kσ2 + k2m2) · P{Mn = k} −m2 (E (Mn))
2

= σ2E(Mn) +m2E(Mn)2 −m2 (E (Mn))
2

= σ2E(Mn) +m2D(Mn).

Since we assumed that X1, X2, ... are identically distributed, the last equality we
can write as:

(4.2) D (S(n)) = D(X1)E(Mn) + E(X1)2D(Mn).

If Mn has a binomial distribution with parameters n and p where p is the
probability of a successful outcome, i.e the probability of a variable to be observed.
If we put q = 1− p the probability of failure, that is the probability of a variable to
be missing we have the equations (4.1) and (4.2) written in the form:

E (S(n)) = mnp

and

D (S(n)) = σ2np+m2npq = np(σ2 +m2 + q).

Further, it is possible to extend the application of the proposed model in the
case when the observed random variables are determined by a general point process
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and when only conditions on Mn are imposed. It may be interesting to see the
implementation of the proposed mathematical model based on a strictly station-
ary sequence of random variables (Xn)n>1 with ”short range” dependence. This
problem was considered and analyzed by Mladenovic and Piterbarg (see [23]) where
consistency of Hill’s estimator was proved. The main presumed condition in the
paper means that the finite dimensional distributions of (Xn) are invariant under
shifts and the dependence between observations from (Xn) becomes weaker as time
separation becomes larger. More, under additional conditions this model of incom-
pleteness was considered by Ilic and Mladenovic (see [14]), where the asymptotic
behavior of the Pareto index estimator, proposed by Bacro and Brito (see [2]), was
analyzed. Also it it can be proved that in the case when the number of observed
variables Mn has the binomial distribution the sequence X̃1, ..., X̃Mn

of observed
variables is asymptotically stationary (according to the definition from [6]). The
proposed model can be used for various practical situations where more thorough
theoretical tool is necessary in order to describe the incompleteness of the data. It
can be interesting for the researchers in this area for the mathematical establishment
of certain incomplete structures in the surveys.

Finally, we give the necessary conditions that are used in the above research
papers in order to enhance the mathematical approach in confronting with the
missing data in stationary sequences.

Assumption A. The sequence X1, X2, . . . does not depend on Mn and

Mn

n

p−→ c0 > 0 as n→ +∞.

Suppose βn is a sequence of real numbers such that

lim
n→∞

βn =∞ and lim
n→∞

βn
n

= 0.

Let

Kn =

[
Mn

βn

]
and Bn =

{
0, Mn = 0
Kn

Mn
, Mn ≥ 1

where the floor function [.] denotes the largest previous integer. Define Ỹi = (ln X̃i−
lnF−1(1−Bn))+ and Ỹ ζi = I

{
ln X̃i − lnF−1(1−Bn) > ζ√

Kn

}
where ζ ∈ R.

Assumption B. For any h ∈ N and θ ∈ R

V ar

{ h∑
j=1

(
(Ỹj+k − EỸj+k) + θ(Ỹ ζj+k − EỸ

ζ
j+k)

)}
does not depend on k.

Remark 4.1. In the case when the number of observed variables Mn has the binomial
distribution both the Assumption A and Assumption B are satisfied. In this case the
sequence X̃1, ..., X̃Mn of observed variables is asymptotically stationary, according to the
definition from [6].
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5. Conclusion

Missing data is an intermittent issue in many areas such as: market research,
database analysis, social analysis, medical research and generally in survey research.
Even a small percent of missing data can produce significant problems in the sta-
tistical analysis possibly leading to wrong conclusions. The purpose of this article
is to identify the problem, to recognize the missing data pattern and to choose the
proper methodology for dealing with the incomplete sample. Further intention of
this paper is to indicate the possibility of the potential implementation of the pro-
posed mathematical formulation in statistical researches having the MCAR data
structure. Prospective research will undeniably derive further improvements and
expansions of the proposed mathematical models and practical techniques in order
to achieve higher efficiency in situations in which missing data appear.
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