Приказ основних података о документу

dc.contributor.authorMitic, Vojislav V.
dc.contributor.authorLazovic, Goran
dc.contributor.authorPaunovic, Vesna
dc.contributor.authorCvetkovic, Nenad
dc.contributor.authorJovanovic, Dejan
dc.contributor.authorVeljkovic, Sandra
dc.contributor.authorRandjelovic, Branislav
dc.contributor.authorVlahovic, Branislav
dc.date.accessioned2022-11-02T09:59:12Z
dc.date.available2022-11-02T09:59:12Z
dc.date.issued2019
dc.identifier.citationИИИ 43007 “Истраживање климатских промена и њиховог утицаја на животну средину - праћење утицаја, адаптација и ублажавање”en_US
dc.identifier.citationТР 32012 „Интелигентни Кабинет за Физикалну Медицину – ИКАФИМ“en_US
dc.identifier.urihttps://platon.pr.ac.rs/handle/123456789/842
dc.description.abstractThe world's perennial need for energy and microelectronic miniaturization brings with it a broad set of technological and scientific challenges. Materials characterized by precise microstructural architectures based on fractal analysis and ranging in size down to nano scale represent an important avenue for finding novel solutions. Deep materials structure hierarchies of this type open new possibilities in capacity according to the Heywang model, especially when extended by a fractals approach and intergranular relationships supported and recognized by their fractal nature. These developments are opening new frontiers in microelectronics miniaturization. They build on early fractal applications that were used as tools in miniaturization research and also provided application perspectives for diverse energy technologies. In other words, fractals, as a crucial concept of modern theoretical-experimental physics and materials sciences, are tightly linked to higher integration processes and microelectronics miniaturization. They also hold potential for meeting the energy exploitation challenge. In this research context, for the first time we experimentally and theoretically investigated the electrostatic field between the grains within fractal nature aspects. It is essentially a theoretical experiment based on samples of experimental microstructures imaged with SEM, as previously published in a number of other papers. We now take the research a step further by consolidating the experimental samples with respect to the predicted distribution of grains and pores within the sample mass. We make an original contribution by opening the frame of scale sizes with respect to the technical processes of consolidation. This lets us predict the constitutive elements of the microstructures – approximately equidistant grains and pores. In this paper we define in a practical manner the final target elements for experimental consolidation of real samples. It is the main bridge between a designed microstructure and related characteristics – for example, fractal dimensions and final properties of next-generation fractal microelectronics.en_US
dc.language.isoen_USen_US
dc.publisherТехна груп, Италијаen_US
dc.rightsCC0 1.0 Универзална*
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.titleFractal frontiers in microelectronic ceramic materialsen_US
dc.title.alternativeCeramics Internationаlen_US
dc.typeclanak-u-casopisuen_US
dc.description.versionpublishedVersionen_US
dc.identifier.doihttps://doi.org/10.1016/j.ceramint.2019.01.020
dc.citation.volume45
dc.citation.issue7 (part B)
dc.citation.spage9679
dc.citation.epage9685
dc.subject.keywordsCeramic materials, Microelectronic miniaturization, Fractals, Electrostatic field, Energy technologiesen_US
dc.type.mCategoryM21aen_US
dc.type.mCategorydelayedAccessen_US
dc.type.mCategoryM21aen_US
dc.type.mCategorydelayedAccessen_US
dc.identifier.ISSN0272-8842


Документи

Thumbnail
Thumbnail

Овај рад се појављује у следећим колекцијама

Приказ основних података о документу

CC0 1.0 Универзална
Осим где је другачије наведено, лиценца овог рада је описана саCC0 1.0 Универзална