See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/332375330

The proof of the Perepechko's conjecture concerning near-perfect matchings on Cm x Pn cylinders of odd order

Article in Applicable Analysis and Discrete Mathematics • January 2019
DOI: 10.2298/AADM181016002D

citations

0
4 authors, including:

Jelena Djokic
University of Novi Sad - Faculty of Technical Sciences
4 PUBLICATIONS 0 CITATIONS SEE PROFILE

READS
41

Olga Bodroža-Pantić
University of Novi Sad
35 PUBLICATIONS 108 CITATIONS

SEE PROFILE

Applicable Analysis And Discrete Mathematics available online at http://pefmath.etf.rs

Appl. Anal. Discrete Math. x (xxxx), xxx-xxx.
doi:10.2298/AADMxxxxxxxx

THE PROOF OF THE PEREPECHKO's CONJECTURE CONCERNING NEAR-PERFECT MATCHINGS ON $C_{m} \times P_{n}$ CYLINDERS OF ODD ORDER

Rade Doroslovački*, Jelena Dokić, Bojana Pantić, Olga Bodroža-Pantić

Abstract

For all odd values of m, we prove that the sequence of the numbers of near-perfect matchings on $C_{m} \times P_{2 n+1}$ cylinder with a vacancy on the boundary obeys the same recurrence relation as the sequence of the numbers of perfect matchings on $C_{m} \times P_{2 n}$. Further more, we prove that for all odd values of m denominator of the generating function for the total number of the near-perfect matchings on $C_{m} \times P_{2 n+1}$ graph is always the square of denominator of generating function for the sequence of the numbers of perfect matchings on $C_{m} \times P_{2 n}$ graph, as recently conjectured by Perepechko.

1. INTRODUCTION

The monomer-dimer problem, that of counting the exact number of coverings of a rectangular lattice by a previously specified number of monomers and dimers, arises in several models in statistical physics. When the number of monomers is zero this problem basically comes down to the enumeration of perfect matchings, and has been widely studied ($[\mathbf{1}],[\mathbf{8}]$). Whereas in case the number of monomers is one (in the odd sized graphs) the term we use for these configurations is near-perfect matchings.

This paper deals with a monomer-dimer problem on $C_{m} \times P_{n}$ graphs which shall further on be referred to as cylinders (Figure 1). The vacancy is a single monomer on a non-bipartite lattice such as these cylinders and rectangular lattices of the form $P_{m} \times P_{n}$ where both parameters m and n are odd. A closed-form expression for the number of near-perfect matchings when the vacancy is on the boundary of a cylinder is given in [10].

[^0]The similarity of asymptotic expansions for the total number of near-perfect matching on $C_{m} \times P_{n}$ cylinders and $P_{m} \times P_{n}$ rectangular lattices is reported by Kong in [5]. More to the point, Perepechko recently extended these results [6] revealing that if the location of the vacancy remains unchanged both the number of near-perfect matchings and the number of perfect matchings [4] on a cylinder with odd fixed m are solutions to the same recurrence relation. In order to enumerate matchings he applied a universal method proposed by Wilf [9], with the help of an algebraic computer system for whose implementation he required a 64-bit version of Maple 17. The end result was, obtaining the generating functions for $m \leq 13$ which enabled him to put forth the following theorem as a conjecture:

Theorem 1. [6] For the all odd values of m the denominator of the generating function $G_{m}^{N}(z)$ for the total number of near-perfect matchings on $C_{m} \times P_{2 n+1}$ is always the square of the denominator of generating function $G_{m}^{P}(z)$ for the number of perfect matchings on $C_{m} \times P_{2 n}$.

Figure 1: Cylinder $C_{5} \times P_{2 n+1}$.

2. PRELIMINARIES

From this point forward, we shall assume that m is a fixed odd integer greater than 1. Now, let $C_{m}^{(j)}$ be the j-th copy of the cycle C_{m} with vertices $v_{1}^{(j)}, v_{2}^{(j)}, \ldots, v_{m}^{(j)}(1 \leq j \leq n)$ in the $C_{m} \times P_{n}$ graph labeled by $G_{m, n}$ (Figure 1). For practical reasons we shall be using the following vertex labels for $v_{0}^{(i)}$ and $v_{m+1}^{(i)}$ interchangeably with $v_{m}^{(i)}$ and $v_{1}^{(i)}$, respectively.

Figure 2 a) depicts a $C_{3} \times P_{6}$ graph together with one of his perfect matchings (represented by the bold edges). In Figure 2 b) and 2 c) an odd sized graph $C_{3} \times P_{7}$ is shown together with a couple of his near-perfect matchings: the first one having a vacancy in the form of vertex $v_{1}^{(1)}$ on the cylinder's boundary $\left(C_{3}^{(1)} \cup C_{3}^{(7)}\right)$ (Figure 2b) and the second one's vacancy being vertex $v_{1}^{(4)}$ that belongs to $C_{3}^{(4)}$ cycle (Figure 2c). Note that the edges of the second near-perfect matching (in bold) which belong to the subgraph of $C_{3} \times P_{7}$ induced by the set of vertices from cycles $C_{3}^{(1)}, C_{3}^{(2)}$ and $C_{3}^{(3)}$ determine a near-perfect matching of
this subgraph (which is itself a cylinder, too) with a vacancy in $v_{2}^{(3)}$ on its boundary. We would obtain a perfectly similar situation if we were to consider the last three cycles of $C_{3} \times P_{7}$ instead of the first three. In that case the vacancy would be represented with vertex $v_{3}^{(5)}$ (Figure 2c).

Let $K_{m}(n)$ be the number of perfect matchings on the cylinder $G_{m, n}$, when $n \geq 1$ setting $K_{m}(0) \stackrel{\text { def }}{=} 1$. Let $K_{m}^{v}(n)$ be the number of near-perfect matchings on the cylinder $G_{m, n}$ when the vacancy is fixed at vertex $v\left(v \in V\left(G_{m, n}\right)\right)$ or, in other words, the number of perfect matchings of the graph $G_{m, n}-v$. Note that the number $K_{m}(n)$ is non-zero iff n is even and the number $K_{m}^{v}(n)$ is non-zero iff n is odd. Further, if the vertices v and w both belong to the same cycle $C_{m}^{j}(1 \leq j \leq n)$ then $K_{m}^{v}(n)=K_{m}^{w}(n)$ so let us denote it by $\widehat{K}_{m}^{(j)}(n)$. This comes as a consequence of the rotational symmetry of the cylinder. However, there is yet another symmetry of it which implies that

$$
\begin{equation*}
\widehat{K}_{m}^{(j)}(n)=\widehat{K}_{m}^{(n+1-j)}(n), \text { for all } j(1 \leq j \leq n) . \tag{1}
\end{equation*}
$$

a)

b)

c)

Figure 2: a) Graph $G_{3,6}$ with one of his perfect matchings b) Graph $G_{3,7}$ with one of his near-perfect matchings and vacancy $v_{1}^{(1)}$ on the cylinder's boundary; c) Graph $G_{3,7}$ with one of his near-perfect matchings and vacancy $v_{1}^{(4)}$.

We shall adopt the following labels used in [6]:
$\mathcal{G}_{m}^{B}(z) \stackrel{\text { def }}{=} \sum_{n=0}^{\infty} \widehat{K}_{m}^{B}(n) z^{n}$ - generating function for the numbers of near-perfect matchings on $G_{m, 2 n+1}$ graph with one fixed vacant vertex on the boundary, i.e. for the sequence $\widehat{K}_{m}^{B}(n) \stackrel{\text { def }}{=} \widehat{K}_{m}^{(1)}(2 n+1), n \geq 0$.
$\mathcal{G}_{m}^{P}(z) \stackrel{\text { def }}{=} \sum_{n=0}^{\infty} \widehat{K}_{m}^{P}(n) z^{n}$ - generating function for the numbers of perfect matchings on the graph $G_{m, 2 n}$, i.e. for the sequence $\widehat{K}_{m}^{P}(n) \stackrel{\text { def }}{=} K_{m}(2 n), n \geq 0\left(K_{m}(0) \stackrel{\text { def }}{=} 1\right)$. $\mathcal{G}_{m}^{N}(z) \stackrel{\text { def }}{=} \sum_{n=0}^{\infty} \widehat{K}_{m}^{N}(n) z^{n}$ - generating function for the total number of near-perfect matchings on $G_{m, 2 n+1}$ graph, i.e. for the sequence $\widehat{K}_{m}^{N}(n) \stackrel{\text { def }}{=} m \cdot \sum_{j=1}^{2 n+1} \widehat{K}_{m}^{(j)}(2 n+1), n \geq 0$.

.1. THE MAIN RESULT

With the aim of proving Theorem 1 we shall be in need of the definition bellow.
Definition 1. For some perfect matching (near-perfect matching) of the graph $G_{m, n}$, where n is even (n is odd), the state of (vertices belonging to) a cycle $C_{m}^{(j)}$, where $1 \leq j \leq n$ (where $j^{\prime} \leq j \leq n$ and $C_{m}^{\left(j^{\prime}\right)}$ comprises vacancy v) is by the definition a cyclic word $p \equiv p_{1} p_{2} \ldots p_{m}$ $\left(p_{0} \stackrel{\text { def }}{=} p_{m}\right.$ and $\left.p_{m+1} \stackrel{\text { def }}{=} p_{1}\right)$ over alphabet $\{L, R, M\}$ formed in the following manner:
$p_{i}= \begin{cases}L, & \begin{array}{l}\text { either if vertex } v_{i}^{(j)} \text { is a vacancy or the edge } v_{i}^{(j)} v_{i}^{(j-1)}(j \geq 2) \text { belongs to } \\ \text { that perfect matching (near-perfect matching), }\end{array} \\ R, & \begin{array}{l}\text { if the edge } v_{i}^{(j)} v_{i}^{(j+1)}(j \leq n-1) \text { belongs to that perfect matching } \\ \text { (near-perfect matching), }\end{array} \\ M, & \begin{array}{l}\text { either if the edge } v_{i}^{(j)} v_{i+1}^{(j)} \text { or the edge } v_{i}^{(j)} v_{i-1}^{(j)} \text { belongs to that perfect } \\ \text { matching (near-perfect matching). }\end{array}\end{cases}$
For instance, the state of the vertices belonging to $C_{3}^{(1)}$ cycle in Figure 2a) i b) are $M M R$ and $L M M$, respectively, whereas the state of vertices belonging to $C_{3}^{(1)}$ cycle in Figure 2 c) is not defined as the vacancy belongs to the forth cycle. For the last near-perfect matching, the state of vertices from the last four cycles are as follows: $L L R, M M L, R M M$ and $L M M$. It is worthy a noticing that all the maximal subwords of the cyclic word $p_{1} p_{2} \ldots p_{m}$ consisting only of the letter M are of even size.

Let us denote by $\mathcal{D}_{m} \equiv\left(V\left(\mathcal{D}_{m}\right), E\left(\mathcal{D}_{m}\right)\right.$) ($m \geq 3$) the digraph whose set of vertices $V\left(\mathcal{D}_{m}\right)$ consists of all the possible states of cycles $C_{m}^{(j)}$ of graph $G_{m, n}$ for some perfect matching (n an arbitrary even integer) or near-perfect matching (n an arbitrary odd integer), whilst the set of edges $E\left(\mathcal{D}_{m}\right)$ is defined in the following way: there exists an edge from vertex $p_{1} p_{2} \ldots p_{m}$ to $q_{1} q_{2} \ldots q_{m}$ iff the following is fulfilled $p_{i}=R \Leftrightarrow q_{i}=L$, for all i $(1 \leq i \leq m)$. Now, let \mathcal{P}_{m} be a subset of $V\left(\mathcal{D}_{m}\right)$ which contains all the words which have
an even number of letter L (including zero). We shall denote the set $V\left(\mathcal{D}_{m}\right) \backslash \mathcal{P}_{m}$, which consists of all the words with an odd number of letter L, with \mathcal{B}_{m}. Let us notice the digraph \mathcal{D}_{m} is in fact the bipartite graph $\left(\mathcal{P}_{m}, \mathcal{B}_{m}\right)$ which comes as a result of m being an odd number and out of the definition of $E\left(\mathcal{D}_{m}\right)$.
Lemma 1. \mathcal{P}_{m} and \mathcal{B}_{m} are sets of the same cardinality, to be more precise

$$
\left|\mathcal{P}_{m}\right|=\left|\mathcal{B}_{m}\right|=\frac{(1-\sqrt{2})^{m}+(1+\sqrt{2})^{m}}{2}
$$

Proof. We begin by defining a mapping $\varphi: \mathcal{P}_{m} \rightarrow \mathcal{B}_{m}$ between these two sets in the following way. At first, each vertex $p \in \mathcal{P}_{m}$ is being associated with the element $\varphi(p) \in \mathcal{B}_{m}$ which as a cyclic word is obtained from the word p substituting each appearance of L with R and reverse, each appearance of R with L. Since m is an odd number, the number of letters R in the word p is consequently odd, thus the number of letters L in the word q is odd. Clearly, this particular mapping is therefore well defined. Additionally, for each element $b \in \mathcal{B}_{m}$ there is a uniquely determined element from \mathscr{P}_{m} which maps into it by the same principal - substituting each letter L with R and conversely, so the mapping φ is a bijection.

With the aim of determining the exact cardinality of the set $V\left(\mathcal{D}_{m}\right)$ let l_{n} be defined as the number of all the (non-cyclic) words of length n over the alphabet $\{L, M, R\}$ such that all of its maximal subwords which consist solely of consecutive $M \mathrm{~s}$ are of even length. Having analised all the potential candidates for the choice of the letter corresponding to vertex $v_{1}^{(j)}$ what we obtain is the following recurrence formula: $l_{n}=2 l_{n-1}+l_{n-2}$, with the initial conditions $l_{1}=2, l_{2}=5\left(l_{0} \stackrel{\text { def }}{=} 1\right)$ alongside with $\left|\mathcal{P}_{m} \cup \mathcal{B}_{m}\right|=2 l_{m-1}+2 l_{m-2}$. Solving the above recurrence equation for l_{n} in the standard fashion we have that $\left|\mathcal{P}_{m} \cup \mathcal{B}_{m}\right|=$ $(1-\sqrt{2})^{m}+(1+\sqrt{2})^{m}$, which implies the very statement of the lemma.

Let $\mathscr{P}_{m}^{*}, \mathcal{B}_{m}^{*}$ and \mathcal{E}_{m} be subsets of $V\left(\mathcal{D}_{m}\right)$ which consist of the words without the letter L, words with exactly one letter L and those words which do not contain the letter R at all, respectively. Evidently, $\mathcal{P}_{m}^{*} \subseteq \mathcal{P}_{m}$ i $\mathcal{B}_{m}^{*} \subseteq \mathcal{B}_{m}$. Note that if the cyclic word $p \equiv p_{1} p_{2} \ldots p_{m}$ over the alphabet $\{L, R, M\}$ belongs to one of these sets $V\left(\mathcal{D}_{m}\right), \mathcal{P}_{m}, \mathcal{B}_{m}, \mathcal{P}_{m}^{*}, \mathcal{B}_{m}^{*}$ or \mathcal{E}_{m}, then the word $\sigma(p) \stackrel{\text { def }}{=} p_{m} p_{m-1} \ldots p_{2} p_{1}$ (obtained under reversal) belongs to the very same set, as well as the word $\rho_{k}(p) \stackrel{\text { def }}{=} p_{k} p_{k+1} \ldots p_{m} p_{1} \ldots p_{k-1}$ for an arbitrary $k(1 \leq k \leq m)$ (this is a consequence of the cylinder's symmetry with respect to the plane which contains the cylinder's axe and of its rotational symmetry). We say that the words $\sigma(p)$ and $\rho_{k}(p)$ $(1 \leq k \leq m)$ are of the same type as p. Representatives of any possible type of states for $m=3$ (of some cycle $C_{3}^{(j)}$) are shown in Figure 3, whereas the same for $m=5$ (and cycle $C_{5}^{(j)}$) are depicted in Figure 4 and Figure 5). Additionally, note that in case there exists an edge in the digraph \mathcal{D}_{m} which points from v to some vertex w, than there exists an edge pointing from vertex $\rho_{k}(v)$ to vertex $\rho_{k}(w)(1 \leq k \leq m)$, but also an edge pointing from vertex $\sigma(v)$ to vertex $\sigma(w)$.
Lemma 2. The number of different types of words belonging to the set \mathcal{P}_{m} is equal to the number of different types of words from the set \mathcal{B}_{m}.

Proof. Let us form a bijection between these two sets in the following manner. With
each of the representatives $p \in \mathcal{P}_{m}$ from the class of words that are of the same type we associate a representative of the class of words $\varphi(p) \in \mathcal{B}_{m}$ (substituting each letter L with R and conversely, each letter R with L). It follows trivially that the mapping defined as such is a bijection from the facts that the mapping $\varphi: \mathscr{P}_{m} \rightarrow \mathcal{B}_{m}$ is a bijection and that the words of the same type are being mapped into adequate words of the same type.

Let us denote with $f^{p}(k)$ the number of all the walks of length $k(k \geq 0)$ in the digraph \mathcal{D}_{m} which begin at vertex $p\left(p \in V\left(\mathcal{D}_{m}\right)\right)$ and end at a vertex from the set \mathcal{E}_{m}.

It is then fairly simple to prove the following two lemmas:
Lemma 3. Each of the perfect matchings of the graph $G_{m, 2 n}(n \geq 1)$, corresponds to a unique walk of length $2 n-1$ in the digraph \mathcal{D}_{m} which begins at a vertex from the set \mathscr{P}_{m}^{*} and ends at a vertex from the set \mathcal{E}_{m}, whilst the j-th vertex $(1 \leq j \leq 2 n)$ in that walk represents the state of the j-th cycle $C_{m}^{(j)}$ from the observed perfect matching, and vice versa. Each walk of length $2 n-1$ in the digraph \mathcal{D}_{m} which starts at a vertex from the set \mathcal{P}_{m}^{*} yet ends at a vertex from the set \mathcal{E}_{m} defines a unique perfect matching of the graph $G_{m, 2 n}$ whose each cycle $C_{m}^{(j)}(1 \leq j \leq 2 n)$ is in the state corresponding to the j-th vertex in that walk.

Lemma 4. Each near-perfect matching of the graph $G_{m, 2 n+1}(n \geq 0)$ with a vacancy on the cycle $C_{m}^{(1)}$ of this graph corresponds to a unique walk of length $2 n$ in the digraph \mathcal{D}_{m} which begins at a vertex from the set \mathcal{B}_{m}^{*} and ends at a vertex from the set \mathcal{E}_{m}, whilst the j-th vertex $(1 \leq j \leq 2 n+1)$ in that walk represents the state of the j-th cycle $C_{m}^{(j)}$ for the given near-perfect matching, and vice versa. Each walk of length $2 n$ in the digraph \mathcal{D}_{m} which starts at a vertex from the set \mathcal{B}_{m}^{*} and ends at a vertex from the set \mathcal{E}_{m} defines a unique near-perfect matching of the graph $G_{m, 2 n+1}$ with a vacancy on the cycle $C_{m}^{(1)}$ whose state of the cycle $C_{m}^{(j)}$ for each j, where $1 \leq j \leq n$, is exactly the word corresponding to the j-th vertex of that walk.

Forming the above mentioned bijections we have that

$$
\begin{gather*}
\widehat{K}_{m}^{P}(n)=K_{m}(2 n)=\sum_{p \in \mathcal{P}_{m}^{*}} f^{p}(2 n-1) \quad(n \geq 1) \tag{2}\\
\widehat{K}_{m}^{B}(n)=\widehat{K}_{m}^{(1)}(2 n+1)=\frac{1}{m} \sum_{b \in \mathcal{B}_{m}^{*}} f^{b}(2 n) \quad(n \geq 0) \tag{3}
\end{gather*}
$$

Note that $f^{b}(0)=0$ for $b \in \mathcal{B}_{m}^{*} \backslash \mathcal{E}_{m}$, whereas $f^{b}(0)=1$ for $b \in \mathcal{B}_{m}^{*} \cap \mathcal{E}_{m}$, and that $\mid \mathcal{B}_{m}^{*} \cap$ $\mathcal{E}_{m} \mid=m$ and $\widehat{K}_{m}^{B}(0)=\widehat{K}_{m}^{(1)}(1)=1$.

Definition 2. Two cyclic words $p \equiv p_{1} p_{2} \ldots p_{m}$ and $q \equiv q_{1} q_{2} \ldots q_{m}$ over the alphabet $\{L, R, M\}$ are called equivalent iff there exists a word q^{*} of the same type as q in which all the letters R (in case there are any at all) appear on exactly the same positions as in the word p

$p^{(3)}{ }^{L}$

Figure 3: Possible types of states in cycle $C_{3}^{(j)}$.

Figure 4: Possible types of states in cycle $C_{5}^{(j)}: b_{1}-b_{8}$ (with an odd number of letters L).

$p^{(7)}{ }^{L}$

$p^{(8)}$

Figure 5: Possible types of states in cycle $C_{5}^{(j)}: p_{1}-p_{8}$ (with an even number of letters L).

For example, vertices $b^{(1)} \equiv L M M M M$ i $b^{(5)} \equiv L M M L L$ are two vertices of the digraph \mathcal{D}_{m} of a different type, in which the letter R does not appear. Consequently, these two words are equivalent. Vertices $p^{(5)} \equiv L M M R L, p^{(7)} \equiv L M M L R, p^{(8)} \equiv L L L L R$ i $p^{(1)} \equiv$ $M M R M M$ are also equivalent as e.g. the words $\rho_{4}\left(p^{(5)}\right) \equiv R L L M M, \sigma\left(p^{(7)}\right) \equiv R L M M L$, $\rho_{5}\left(p^{(8)}\right) \equiv R L L L L$ and $\rho_{3}\left(p^{(1)}\right) \equiv R M M M M$ are all the words in which the unique R appears in the initial position. Additionally, when observing the vertices $b^{(3)} \equiv L R M M R$ and $\rho_{4}\left(b^{(7)}\right) \equiv L R L L R$ we come to notice that the letters R appear in the second and the fifth position, thus proving the vertices $b^{(3)}$ i $b^{(7)}$ to be equivalent. Note that all the vertices of the same type are also mutually equivalent.

Lemma 5. In case the vertices v and w of the digraph \mathcal{D}_{m} are equivalent, then $f^{v}(k)=$ $f^{w}(k)$, for all $k \geq 0$.

Proof. Let us consider, at first, the case of different vertices of the same type. Let $w=$ $\rho_{r}(v)$, for some integer $r(2 \leq r \leq m)$. Every walk $v_{0} \equiv v, v_{1}, v_{2}, \ldots, v_{k}$ of length k in the digraph \mathcal{D}_{m} which starts with v and ends at a vertex from the set $\mathcal{E}_{m}\left(v_{k} \in \mathcal{E}_{m}\right)$ corresponds to a unique walk $\rho_{r}\left(v_{0}\right) \equiv \rho_{r}(v) \equiv w, \rho_{r}\left(v_{1}\right), \rho_{r}\left(v_{2}\right), \ldots, \rho_{r}\left(v_{k}\right)$ of length k in the digraph \mathcal{D}_{m} which begins at w and ends at a vertex from the set $\mathcal{E}_{m}\left(\rho_{r}\left(v_{k}\right) \in \mathcal{E}_{m}\right)$, and vice versa. Every walk $w_{0} \equiv w, w_{1}, w_{2}, \ldots, w_{k}$ of length k in the digraph \mathcal{D}_{m} which begins with w and ends at a vertex belonging to the set $\mathcal{E}_{m}\left(w_{k} \in \mathcal{E}_{m}\right)$ corresponds to a unique walk $\rho_{m-r}\left(w_{0}\right) \equiv \rho_{m-r}(w) \equiv v, \rho_{m-r}\left(w_{1}\right), \rho_{m-r}\left(w_{2}\right), \ldots, \rho_{m-r}\left(w_{k}\right)$ of length k in the digraph \mathcal{D}_{m} which begins at v and ends at a vertex from the set $\mathcal{E}_{m}\left(\rho_{m-r}\left(w_{k}\right) \in \mathcal{E}_{m}\right)$. Consequently we have $f^{v}(k)=f^{w}(k)$. The case of $w=\sigma(v)$ is pretty similar.

If the vertices v and w are not of the same type, yet equivalent, then there exists the vertex w^{*} of the same type as w in which the letter R appears on the exact same positions as in v. Then each successor of vertex v is additionally the successor of vertex w^{*} in the digraph \mathcal{D}_{m} and the other way around (having letters L in exactly those positions where $R \mathrm{~s}$ are in v or w^{*}). This implies a possibility of forming a bijection between the set of all the walks of length k which begin at v and end at a vertex from the set \mathcal{E}_{m} with the set of all such walks which instead of beginning at vertex v start at vertex w^{*} simply by substituting the initial vertex v with w^{*} in each of those walks. This is why $f^{v}(k)=f^{w^{*}}(k)=f^{w}(k)$.

Let M_{m} be the adjacency matrix of the digraph \mathcal{D}_{m}. Based on the Cayley-Hamilton theorem, all the sequences $f^{v}(k), k \geq 0, v \in V\left(\mathcal{D}_{m}\right)$ fulfill the same recurrence relation which is determined by the characteristic equation of the matrix M_{m}. Since all of these sequences are the same for all the equivalent vertices, then contracting all of such into one single vertex, with edges being multiplied in case one of the vertices had more different successors which are mutually equivalent, we obtain a multidigraph $\overline{\mathcal{D}}_{m}$ with the adjacency matrix \bar{M}_{m} whose characteristic equation also determines the recurrence formulae of the observed sequences. Sets of vertices $\mathcal{P}_{m}, \mathcal{P}_{m}^{*}, \mathcal{B}_{m}$ and \mathcal{B}_{m}^{*} are in this way being reduced to the sets $\overline{\mathcal{P}}_{m}, \overline{\mathcal{P}}_{m}^{*}, \overline{\mathcal{B}}_{m}$ and $\overline{\mathcal{B}}_{m}^{*}$, respectively. Clearly, $\overline{\bar{P}}_{m}^{*} \subseteq \overline{\mathcal{P}}_{m}$ and $\overline{\mathcal{B}}_{m}^{*} \subseteq \overline{\mathcal{B}}_{m}$.
Multidigraph $\overline{\mathcal{D}}_{3}$ is shown in Figure 6 whereas $\overline{\mathcal{D}}_{5}$ is in Figure 7. For instance, from the vertex which came into existence by the subtraction of vertex $b^{(1)}=L M M M M$ and the vertices which were equivalent to it five edges point into the vertex obtained by the
subtraction of vertex $p^{(2)}=M M R R R$ and the vertices equivalent to it as amongst them there exist five vertices in total (MMRRR, $R M M R R, R R M M R, R R R M M$ and $M R R R M)$ that are all of the same type as $p^{(2)}$ (including this vertex itself) all of which are successors of $b^{(1)}$ in the digraph \mathcal{D}_{m}. From the vertex which was created by the contraction of vertex $p^{(1)}=M M R M M$ the vertices equivalent to it point two edges into the vertex obtained by the contraction of $b^{(2)}=L M M R R$ and the vertices equivalent to it, for there exist exactly two vertices of the digraph \mathcal{D}_{5} from the ten vertices that are of the same type as vertex $b^{(2)}$ which are the successors of vertex $p^{(1)}$. Those are $\rho_{4}\left(b^{(2)}\right) \equiv R R L M M$ and $\rho_{4}\left(\sigma\left(b^{(2)}\right)\right) \equiv$ $M M L R R$ (with the letter L on the third position).

Note that all the vertices from the set \mathcal{E}_{m} are being contracted into one single vertex $e \in \overline{\mathcal{B}}_{m}$. In case $m=5$, vertex e has been obtained by contracting the following few vertices $b^{(1)}, b^{(5)}, b^{(8)}$ and the vertices of the same type as theirs (Figure 7). However, this is not the case for the set \mathcal{P}_{m}^{*}. Namely, already for the case of $m=3$ we have that $\left|\overline{\mathcal{P}}_{m}^{*}\right|>1$.

Figure 6: Multidigraph $\overline{\mathcal{D}}_{3}$.
Lemma 6. The sets $\overline{\mathcal{P}}_{m}$ and $\overline{\mathcal{B}}_{m}$ are of the same cardinality.
Proof. Note that the number of all the elements of the set $\overline{\mathscr{P}}_{m}$ (considered as words) in which the letter R appears k times (k is odd) is equal to the number of all the elements from the set $\overline{\mathcal{B}}_{m}$ in which the letter R appears $m-k$ ($m-k$ is even) times. In other words, the number of different (binary) bracelets with k red beads and $m-k$ green beads is equal to the number of different bracelets with $m-k$ red beads and k green beads. (What we consider under the term of bracelet is a circle of m colored beads with up to two different colors that can be turned over.) Therefore, $\left|\overline{\mathcal{P}}_{m}\right|=\left|\overline{\mathcal{B}}_{m}\right|=\left|V\left(\overline{\mathcal{D}}_{m}\right)\right| / 2$.

To illustrate this, for instance, the number of vertices in $\overline{\mathcal{D}}_{5}$ with exactly two $R \mathrm{~s}$ $b^{(2)}$ and $b^{(4)}$) is equal to the number of vertices with exactly $3 R \mathrm{~s}\left(p^{(2)}\right.$ and $\left.p^{(4)}\right)$. Additionally, the number of vertices in $\overline{\mathcal{D}}_{7}$ containing $0,2,4$ and 6 letters R is $1,3,4$ and 1 , respectively, which is exactly the number of vertices we have for $\overline{\mathcal{D}}_{7}$ with $7,5,3$ and 1 letter R, respectively. The exact number of the bracelets with m beads is

$$
\left|V\left(\overline{\mathcal{D}}_{m}\right)\right|=\frac{1}{2}\left(\frac{1}{m} \sum_{d \mid m} \phi(d) 2^{m / d}+2^{(m+1) / 2}\right)
$$

with $\phi(d)$ the Euler's totient function [2]. For an efficient way to generate them see [7].

Figure 7: Multidigraph $\overline{\mathcal{D}}_{5}$.

Lemma 7. All the sequences $g^{b}(n) \stackrel{\text { def }}{=} f^{b}(2 n)(n \geq 0)$, for an arbitrary $b \in \mathcal{B}_{m}$, as well as the sequences $g^{p}(n) \stackrel{\text { def }}{=} f^{p}(2 n+1)(n \geq 0)$, for an arbitrary $p \in \mathcal{P}_{m}$ obey the very same difference equation of order $\left|V\left(\overline{\mathcal{D}}_{m}\right)\right| / 2$.

Proof. Owing to the fact that the multidigraph $\overline{\mathcal{D}}_{m}=\left(\overline{\mathcal{P}}_{m}, \overline{\mathcal{B}}_{m}\right)$ is bipartite (as well as the digraph $\mathcal{D}_{m}=\left(\mathcal{P}_{m}, \mathcal{B}_{m}\right)$ itself), his adjacency matrix may be represented as a block matrix $\left[\begin{array}{cc}0 & A_{m} \\ B_{m} & 0\end{array}\right]$, where the matrices A_{m} and B_{m} are square matrices of the same order $\left|\overline{\mathcal{P}}_{m}\right|=\left|\overline{\mathcal{B}}_{m}\right|=\left|V\left(\overline{\mathcal{D}}_{m}\right)\right| / 2$.

Let $\overline{\mathcal{P}}_{m}=\left\{p_{1}, p_{2}, \ldots, p_{s}\right\}$ and $\overline{\mathcal{B}}_{m}=\left\{b_{1}, b_{2}, \ldots, b_{s}\right\}$, where $s=\left|V\left(\overline{\mathcal{D}}_{m}\right)\right| / 2$. For the sequences $f^{v}(k), k \geq 0, v \in V\left(\overline{\mathcal{D}}_{m}\right)$ the following holds:

$$
\left[\begin{array}{c}
f^{p_{1}}(k) \tag{4}\\
f^{p_{2}}(k) \\
\vdots \\
f^{p_{s}}(k) \\
f^{b_{1}}(k) \\
f^{b_{2}}(k) \\
\vdots \\
f^{b_{s}}(k)
\end{array}\right]=\left[\begin{array}{cc}
0 & A_{m} \\
B_{m} & 0
\end{array}\right]^{k}\left[\begin{array}{c}
f^{p_{1}}(0) \\
f^{p_{2}}(0) \\
\vdots \\
f^{p_{s}}(0) \\
f^{b_{1}}(0) \\
f^{b_{2}}(0) \\
\vdots \\
f^{b_{s}}(0)
\end{array}\right] \quad \text { and } f^{x}(0)=\left\{\begin{array}{cc}
0, & \text { for } x \neq e \\
1, & \text { for } x=e .
\end{array}\right.
$$

From here we reach a conclusion that the sequence $g^{b}(n) \stackrel{\text { def }}{=} f^{b}(2 n)$, for each $b \in \mathcal{B}_{m}$ obeys the difference equation which is determined by a characteristic equation of the matrix $B_{m} A_{m}$, whereas the sequence $g^{p}(n) \stackrel{\text { def }}{=} f^{p}(2 n+1)$, for each $p \in \mathcal{P}_{m}$ satisfies the recurrence formula which is determined by the characteristic equation of the matrix $A_{m} B_{m}$. Now, since for any two arbitrary square matrices A and B the matrices $A B$ and $B A$ have the same characteristic polynomial (Theorem 1.3.22 in [3]), the statement of the lemma follows.

Note that $\widehat{K}_{m}^{B}(n) \stackrel{\text { def }}{=} \widehat{K}_{m}^{(1)}(2 n+1)=\frac{1}{m} \sum_{b \in \mathcal{B}_{m}^{*}} f^{b}(2 n)=\frac{1}{m} \sum_{b \in \mathcal{B}_{m}^{*}} g^{b}(n)(n \geq 0)$, whereas the sequence $\widehat{K}_{m}^{P}(n) \stackrel{\text { def }}{=} K_{m}(2 n)=\sum_{p \in \mathscr{P}_{m}^{*}} f^{p}(2 n-1)=\sum_{p \in \mathcal{P}_{m}^{*}} g^{p}(n-1)(n \geq 1)$. If two sequences satisfy the same linear, homogeneous difference equation with constant coefficients, then their linear combination also satisfies the very same recurrence formula. Thus it holds that:
Corollary 1. The sequences $\widehat{K}_{m}^{B}(n)(n \geq 0)$ and $\widehat{K}_{m}^{P}(n)(n \geq 1)$, satisfy the same difference equation of order at most $\left|V\left(\overline{\mathcal{D}}_{m}\right)\right| / 2$.

In case of $m=3$ we have $A_{3}=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$ and $B_{3}=\left[\begin{array}{ll}3 & 1 \\ 1 & 0\end{array}\right]$, whereas in case of $m=5$ we have $A_{5}=\left[\begin{array}{cccc}1 & 2 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0\end{array}\right]$ and $B_{5}=\left[\begin{array}{cccc}5 & 5 & 1 & 0 \\ 2 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0\end{array}\right]$.
Characteristic polynomial both for matrix $A_{3} B_{3}$ and for matrix $B_{3} A_{3}$ is $1-5 z+z^{2}$ whereas for matrices $A_{5} B_{5}$ and $B_{5} A_{5}$ that polynomial is in fact $1-19 z+41 z^{2}-19 z^{3}+z^{4}$. Now applying the standard approach we obtain $\mathcal{G}_{3}^{B}(z)=\frac{1}{1-5 z+z^{2}}$ and $\mathcal{G}_{3}^{P}(z)=\frac{1-z}{1-5 z+z^{2}}$, whereas in case of $m=5$ we have $\mathcal{G}_{5}^{B}(z)=\frac{1-z^{2}}{1-19 z+41 z^{2}-19 z^{3}+z^{4}}$ and $\mathcal{G}_{5}^{P}(z)=\frac{(1-z)\left(1-7 z+z^{2}\right)}{1-19 z+41 z^{2}-19 z^{3}+z^{4}}$, which is in agreement with the results obtained in [6].

Let us now turn our attention to the case in which the vacancy v of some near-perfect matching of the graph $G_{m, 2 n+1}$ appears on the cycle $C_{m}^{(j)}$ where $2 \leq j \leq 2 n$.

The Proof of Theorem 1

Without loss of generality, we shall assume that $v \equiv v_{1}^{(j)}$ is a vacancy.
Let $j \frac{\text { I case: } j \text { is an even integer }}{=2 k \text { for some } k(1 \leq k \leq n)}$. The existence of a near-perfect matching implies that the state of the vertices belonging to the cycle $C_{m}^{(j)}$, denoted by p, contains an even number of letters L and an odd number of letters R, i.e. $p \in \mathcal{P}_{m}$. The number od near-perfect matchings in the graph $G_{m, 2 n+1}$ with vacancy $v \equiv v_{1}^{(j)}$ which generate the state p on the j-th cycle is, according to the multiplication law, equal to the number $f^{p}(2(n-k)+1) f^{\hat{p}}(2 k-1)$, where
\hat{p} denotes the state obtained from p when all the letters L, with the exception of the first appearance, have been replaced with R and all letters R with L. Note that $\hat{p} \in \mathcal{P}_{m}$, too. The total number of near-perfect matchings in the graph $G_{m, 2 n+1}$ with vacancy $v \equiv v_{1}^{(j)}$ is equal to

$$
\begin{equation*}
\widehat{K}_{m}^{(2 k)}(2 n+1)=\sum_{p \in \mathcal{P}_{m}^{1}} f^{p}(2(n-k)+1) f^{\hat{p}}(2 k-1) \tag{5}
\end{equation*}
$$

where \mathcal{P}_{m}^{1} denotes the set of all the words from \mathcal{P}_{m} which start with the letter L.
II case: j is an odd integer
If $j=\overline{2 k+1}$ for some $k(1 \leq k \leq n-1)$, then the state of vertices belonging to the cycle $C_{m}^{(j)}$, denoted by b, belongs to the set \mathcal{B}_{m} because it contains an odd number od letters L and an even number of letters R. The number of near-perfect matchings of the graph $G_{m, 2 n+1}$ with vacancy $v \equiv v_{1}^{(j)}$ which generate the state b on the j-th cycle is equal to $f^{b}(2(n-k)) f^{\hat{b}}(2 k)$, where \hat{b} represents the state obtained from b when all the letters L, except for its first occurrence, have been replaced with R and by the substitution of all the letters R with L. The total number of near-perfect matchings in the graph $G_{m, 2 n+1}$ with vacancy $v \equiv v_{1}^{(j)}$ is now equal to

$$
\begin{equation*}
\widehat{K}_{m}^{(2 k+1)}(2 n+1)=\sum_{b \in \mathcal{B}_{m}^{1}} f^{b}(2(n-k)) f^{\hat{b}}(2 k) \tag{6}
\end{equation*}
$$

where \mathcal{B}_{m}^{1} denotes the set of all the words from \mathcal{B}_{m} which begin with the letter L.
Now, utilizing (5), (6), (1) and (4) we have

$$
\begin{align*}
& \widehat{K}_{m}^{N}(n) \stackrel{\text { def }}{=} m \cdot \sum_{j=1}^{2 n+1} \widehat{K}_{m}^{(j)}(2 n+1)=m \cdot\left[\sum_{p \in \mathcal{P}_{m}^{1}}\left(\sum_{k=1}^{n} f^{p}(2(n-k)+1) f^{\hat{p}}(2 k-1)\right)+\right. \\
& \left.\sum_{b \in \mathcal{B}_{m}^{1}}\left(2 f^{b}(2 n) f^{\hat{b}}(0)+\sum_{k=1}^{n-1} f^{b}(2(n-k)) f^{\hat{b}}(2 k)\right)\right], \text { i.e. } \\
& \text { (7) } \quad \widehat{K}_{m}^{N}(n)=m \cdot\left[\sum_{p \in \mathcal{P}_{m}^{1}}\left(\sum_{k=0}^{n-1} g^{p}((n-1)-k) g^{\hat{p}}(k)\right)+\sum_{b \in \mathcal{B}_{m}^{1}}\left(\sum_{k=0}^{n} g^{b}(n-k) g^{\hat{b}}(k)\right)\right] . \tag{7}
\end{align*}
$$

Let $\alpha^{p}(n)$ be the sequence $\alpha^{p}(n) \stackrel{\text { def }}{=} \sum_{k=0}^{n} g^{p}(n-k) g^{\hat{p}}(k)$, where $p \in \mathcal{P}_{m} \cup \mathcal{B}_{m}$ i $n \geq 0$.
From (7) we have

$$
\begin{equation*}
\widehat{K}_{m}^{N}(n)=m \cdot\left[\sum_{p \in \mathcal{P}_{m}^{1}} \alpha^{p}(n-1)+\sum_{b \in \mathcal{B}_{m}^{1}} \alpha^{b}(n)\right] \tag{8}
\end{equation*}
$$

Since the generating function of sequence $\alpha^{p}(n)$ is equal to the product of generating functions of the sequences $g^{p}(n)$ and $g^{\hat{p}}(n)$, thus based upon Lemma 7 the statement of Theorem 1 follows, which was our goal.

Let us now derive the formula for $\widehat{K}_{5}^{N}(n)$.
The set \mathcal{B}_{5}^{1} comprises five vertices (LMMMM, $L M M L L, L L M M L, L L L M M$ and $L L L L L$) equivalent to $b^{(1)}$ (whereas the vertices corresponding to them are $L M M M M$, $L M M R R, L R M M R, L R R M M$ i $L R R R R$, respectively, which are equivalent to $b^{(1)}, b^{(2)}$, $b^{(3)}, b^{(2)}$ and $b^{(4)}$), five vertices ($L M M R R, L R R M M, L R R L L, L L R R L$ i $L L L R R$) equivalent to $b^{(2)}$ (for two of them the corresponding vertices (the ones "with a hat") are equivalent to $b^{(1)}$, two to $b^{(2)}$ and one to $b^{(3)}$), four vertices ($L R M M R, L L R L R, L R L L R$ i $L R L R L$) equivalent to $b^{(3)}$ (for two of them the corresponding vertices are equivalent to $b^{(3)}$, one to $b^{(1)}$ and one to $b^{(2)}$) and vertex $b^{(4)}(L R R R R)$ (whose corresponding vertex $\hat{b}^{(4)}=b^{(8)}$ is equivalent to $b^{(1)}$).

The set P_{5}^{1} contains four vertices of the same type as $p^{(5)}$ and two vertices of the same type as $p^{(7)}$ (all of which are equivalent to $p^{(1)}$ and for each such vertex p, the vertex corresponding to it \hat{p} is equivalent to $p^{(1)}$), four vertices of the same type as $p^{(8)}$ (all equivalent to $p^{(1)}$, for two of which the corresponding vertices are equivalent to $p^{(2)}$ and for the other two to $p^{(4)}$), two vertices of the same type as $p^{(4)}$ (the vertices corresponding to them are equivalent to $p^{(1)}$) and two vertices of the same type as $p^{(6)}$ (equivalent to $p^{(2)}$ and the vertices corresponding to them are equivalent to $p^{(1)}$).

From the initial conditions for sequences g^{p}, where $p \in \overline{\mathcal{P}}_{5} \cup \overline{\mathcal{B}}_{5}$, obtained by the exponentiation of matrix \bar{M}_{5}, we derive their generating functions:
$g^{p_{1}}(z)=\frac{1-z^{2}}{Q(z)}, \quad g^{p_{2}}(z)=\frac{1-5 z+3 z^{2}}{Q(z)}, \quad g^{p_{3}}(z)=g^{b_{1}}(z)=\frac{1-8 z+8 z^{2}-z^{3}}{Q(z)}$,
$g^{p_{4}}(z)=g^{b_{3}}(z)=\frac{z+z^{2}}{Q(z)}, \quad g^{b_{2}}(z)=\frac{3 z-5 z^{2}+z^{3}}{Q(z)}, \quad g^{b_{4}}(z)=\frac{z-z^{3}}{Q(z)}$,
where $Q(z) \stackrel{\text { def }}{=} 1-19 z+41 z^{2}-19 z^{3}+z^{4}$.
Applying the formula (8) we get
$\mathcal{G}_{5}^{N}(z)=5 z\left[6 g^{p_{1}}(z) g^{p_{1}}(z)+4 g^{p_{1}}(z) g^{p_{2}}(z)+4 g^{p_{1}}(z) g^{p_{4}}(z)\right]+5\left[g^{b_{1}}(z) g^{b_{1}}(z)+\right.$
$4 g^{b_{1}}(z) g^{b_{2}}(z)+2 g^{b_{1}}(z) g^{b_{3}}(z)+2 g^{b_{1}}(z) g^{b_{4}}(z)+2 g^{b_{2}}(z) g^{b_{2}}(z)+2 g^{b_{2}}(z) g^{b_{3}}(z)+$ $\left.2 g^{b_{3}}(z) g^{b_{3}}(z)\right]=5 \frac{\left(1+10 z-56 z^{2}+84 z^{3}-24 z^{4}-10 z^{5}+z^{6}\right)}{\left(1-19 z+41 z^{2}-19 z^{3}+z^{4}\right)^{2}}$, which has been obtained in [6].

The derivation of the formula $\mathcal{G}_{3}^{N}(z)=3 \frac{\left(1+2 z-z^{2}\right)}{\left(1-5 z+z^{2}\right)^{2}}$ is fairly analogous and is hence left as an exercise for the readers.

ACKNOWLEDGEMENT

The authors are deeply grateful to the anonymous referee for having carefully read and made suggestions that improved the paper. This research was partially supported by Serbian Ministry of Education, Science and Technological Development under the grants
no. OI 174018, OI 174026 and III 46005.

REFERENCES

1. D. M. Cvetković, M. Doob, H. Sachs: Spectra of Graphs - Theory and Application VEB Deutscher Verlag der Wissenschaften, Berlin, 1982.
2. E.N.Gilbert, John Riordan: Symmetry Types of Periodic Sequences. Ilinois J.Math., 5, 657665 (1961)
3. R. A. Horn, C. R. Johnson: Matrix analysis (2nd ed.), Cambridge University Press, 2013.
4. A. M. Karavaev, S. N. Perepechko: Dimer problem on cylinders: recurrences and generating functions (in Russian). Matematicheskoe Modelirovanie 26:11, 18-22 (2014)
5. Y. Kong: Logarithmic corrections in the free energy of monomer-dimer model on plane lattices with free boundaries. Physical Review E74, 011102 (2006)
6. S.N. Perepechko: Near-Perfect Matchings on Cylinders $C_{m} \times P_{n}$ of Odd Order. EPJ Web of Conferences, Mathematical Modeling and Computational Physics 2017 173, 02016 (2018), 1-4. https://doi.org/10.1051/epjconf/201817302016
7. J. Sawada: Generating Bracelets in Constant Amortized Time SIAM J. COMPUT, 31:1, 259268 (2001)
8. R.P. Stanley: On Dimer Coverings of Rectangles of Fixed Width. Discrete Applied Mathematics, 12, 81-87 (1985)
9. H. S. Wilf: A Mechanical Counting Method and Combinatorial Applications. Journal of Combinatorial Theory 4, 246 (1968)
10. F. Y. Wu, W.-J. Tzeng, N. Sh. Izmailian: Exact Solution of a Monomer-Dimer Problem: A Single Boundary Monomer on a Nonbipartite Lattice. Physical Review E83, 011106 (2011)

Rade Doroslovački

Faculty of Technical Sciences, (Revised 03.02.2019.)
University of Novi Sad,
Novi Sad, Serbia
E-mail: rade.doroslovacki@uns.ac.rs

Jelena Jelena Dokić

Faculty of Technical Sciences,
University of Novi Sad,
Novi Sad, Serbia
E-mail: jelenadjokic23@yahoo.com

Bojana Pantić

Dept. of Math. \& Info.,
Faculty of Science,
University of Novi Sad,
Novi Sad, Serbia
E-mail: bojana@dmi.uns.ac.rs

Olga Bodroža Pantić
Dept. of Math. \& Info.,
Faculty of Science,
University of Novi Sad,
Novi Sad, Serbia
E-mail: olga.bodroza-pantic@dmi.uns.ac.rs

[^0]: * Corresponding author. Rade Doroslovački

 2010 Mathematics Subject Classification. 05C30, 05C38, 05C85
 Keywords and Phrases: Near-Perfect Matchings, generating functions, grid cylinder

