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THE PROOF OF THE PEREPECHKO’s CONJECTURE
CONCERNING NEAR-PERFECT MATCHINGS

ON Cm×Pn CYLINDERS OF ODD ORDER

Rade Doroslovački∗, Jelena -Dokić, Bojana Pantić, Olga Bodroža-Pantić

For all odd values of m, we prove that the sequence of the numbers of near-perfect
matchings on Cm×P2n+1 cylinder with a vacancy on the boundary obeys the same
recurrence relation as the sequence of the numbers of perfect matchings on Cm×P2n.
Further more, we prove that for all odd values of m denominator of the generating
function for the total number of the near-perfect matchings on Cm×P2n+1 graph is
always the square of denominator of generating function for the sequence of the num-
bers of perfect matchings on Cm×P2n graph, as recently conjectured by Perepechko.

1. INTRODUCTION

The monomer-dimer problem, that of counting the exact number of coverings of a
rectangular lattice by a previously specified number of monomers and dimers, arises in
several models in statistical physics. When the number of monomers is zero this problem
basically comes down to the enumeration of perfect matchings, and has been widely stud-
ied ([1], [8]). Whereas in case the number of monomers is one (in the odd sized graphs)
the term we use for these configurations is near-perfect matchings.

This paper deals with a monomer-dimer problem on Cm×Pn graphs which shall
further on be referred to as cylinders (Figure 1). The vacancy is a single monomer on a
non-bipartite lattice such as these cylinders and rectangular lattices of the form Pm×Pn
where both parameters m and n are odd. A closed-form expression for the number of
near-perfect matchings when the vacancy is on the boundary of a cylinder is given in [10].
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The similarity of asymptotic expansions for the total number of near-perfect matching on
Cm×Pn cylinders and Pm×Pn rectangular lattices is reported by Kong in [5]. More to the
point, Perepechko recently extended these results [6] revealing that if the location of the
vacancy remains unchanged both the number of near-perfect matchings and the number of
perfect matchings [4] on a cylinder with odd fixed m are solutions to the same recurrence
relation. In order to enumerate matchings he applied a universal method proposed by Wilf
[9], with the help of an algebraic computer system for whose implementation he required
a 64-bit version of Maple 17. The end result was, obtaining the generating functions for
m≤ 13 which enabled him to put forth the following theorem as a conjecture:

Theorem 1. [6] For the all odd values of m the denominator of the generating function
GN

m(z) for the total number of near-perfect matchings on Cm×P2n+1 is always the square
of the denominator of generating function GP

m(z) for the number of perfect matchings on
Cm×P2n.
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Figure 1: Cylinder C5×P2n+1.

2. PRELIMINARIES

From this point forward, we shall assume that m is a fixed odd integer greater than
1. Now, let C( j)

m be the j-th copy of the cycle Cm with vertices v( j)
1 ,v( j)

2 , . . . ,v( j)
m (1≤ j≤ n)

in the Cm×Pn graph labeled by Gm,n (Figure 1). For practical reasons we shall be using the
following vertex labels for v(i)0 and v(i)m+1 interchangeably with v(i)m and v(i)1 , respectively.

Figure 2 a) depicts a C3×P6 graph together with one of his perfect matchings (rep-
resented by the bold edges). In Figure 2 b) and 2 c) an odd sized graph C3×P7 is shown
together with a couple of his near-perfect matchings: the first one having a vacancy in the
form of vertex v(1)1 on the cylinder’s boundary (C(1)

3 ∪C(7)
3 ) (Figure 2b) and the second one’s

vacancy being vertex v(4)1 that belongs to C(4)
3 cycle (Figure 2c). Note that the edges of the

second near-perfect matching (in bold) which belong to the subgraph of C3×P7 induced
by the set of vertices from cycles C(1)

3 , C(2)
3 and C(3)

3 determine a near-perfect matching of
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this subgraph (which is itself a cylinder, too) with a vacancy in v(3)2 on its boundary. We
would obtain a perfectly similar situation if we were to consider the last three cycles of
C3×P7 instead of the first three. In that case the vacancy would be represented with vertex
v(5)3 (Figure 2c).

Let Km(n) be the number of perfect matchings on the cylinder Gm,n , when n ≥ 1

setting Km(0)
def
= 1. Let Kv

m(n) be the number of near-perfect matchings on the cylinder
Gm,n when the vacancy is fixed at vertex v (v ∈V (Gm,n)) or, in other words, the number of
perfect matchings of the graph Gm,n− v. Note that the number Km(n) is non-zero iff n is
even and the number Kv

m(n) is non-zero iff n is odd. Further, if the vertices v and w both
belong to the same cycle C j

m (1≤ j≤ n) then Kv
m(n) = Kw

m(n) so let us denote it by K̂( j)
m (n).

This comes as a consequence of the rotational symmetry of the cylinder. However, there is
yet another symmetry of it which implies that

(1) K̂( j)
m (n) = K̂(n+1− j)

m (n), for all j (1≤ j ≤ n).
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Figure 2: a) Graph G3,6 with one of his perfect matchings b) Graph G3,7 with one of his
near-perfect matchings and vacancy v(1)1 on the cylinder’s boundary; c) Graph G3,7 with
one of his near-perfect matchings and vacancy v(4)1 .

We shall adopt the following labels used in [6]:
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GB
m(z)

def
=

∞

∑
n=0

K̂B
m(n)z

n - generating function for the numbers of near-perfect match-

ings on Gm,2n+1 graph with one fixed vacant vertex on the boundary, i.e. for the sequence

K̂B
m(n)

def
= K̂(1)

m (2n+1), n≥ 0.

GP
m(z)

def
=

∞

∑
n=0

K̂P
m(n)z

n - generating function for the numbers of perfect matchings on

the graph Gm,2n, i.e. for the sequence K̂P
m(n)

def
= Km(2n), n≥ 0 (Km(0)

def
= 1).

GN
m (z) def

=
∞

∑
n=0

K̂N
m (n)z

n - generating function for the total number of near-perfect

matchings on Gm,2n+1 graph, i.e. for the sequence K̂N
m (n)

def
= m ·

2n+1

∑
j=1

K̂( j)
m (2n+1), n≥ 0.

1.. THE MAIN RESULT

With the aim of proving Theorem 1 we shall be in need of the definition bellow.

Definition 1. For some perfect matching (near-perfect matching) of the graph Gm,n, where
n is even (n is odd), the state of (vertices belonging to) a cycle C( j)

m , where 1≤ j≤ n (where
j′ ≤ j≤ n and C( j′)

m comprises vacancy v) is by the definition a cyclic word p≡ p1 p2 . . . pm

(p0
def
= pm and pm+1

def
= p1) over alphabet {L,R,M} formed in the following manner:

pi =



L, either if vertex v( j)
i is a vacancy or the edge v( j)

i v( j−1)
i ( j ≥ 2) belongs to

that perfect matching (near-perfect matching),
R, if the edge v( j)

i v( j+1)
i ( j ≤ n−1) belongs to that perfect matching

(near-perfect matching),
M, either if the edge v( j)

i v( j)
i+1 or the edge v( j)

i v( j)
i−1 belongs to that perfect

matching (near-perfect matching).

For instance, the state of the vertices belonging to C(1)
3 cycle in Figure 2a) i b) are

MMR and LMM, respectively, whereas the state of vertices belonging to C(1)
3 cycle in Fig-

ure 2c) is not defined as the vacancy belongs to the forth cycle. For the last near-perfect
matching, the state of vertices from the last four cycles are as follows: LLR,MML,RMM
and LMM. It is worthy a noticing that all the maximal subwords of the cyclic word
p1 p2 . . . pm consisting only of the letter M are of even size.

Let us denote by Dm ≡ (V (Dm),E(Dm)) (m ≥ 3) the digraph whose set of vertices
V (Dm) consists of all the possible states of cycles C( j)

m of graph Gm,n for some perfect
matching (n an arbitrary even integer) or near-perfect matching (n an arbitrary odd integer),
whilst the set of edges E(Dm) is defined in the following way: there exists an edge from
vertex p1 p2 . . . pm to q1q2 . . .qm iff the following is fulfilled pi = R⇔ qi = L, for all i
(1 ≤ i ≤ m). Now, let Pm be a subset of V (Dm) which contains all the words which have
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an even number of letter L (including zero). We shall denote the set V (Dm)\Pm, which
consists of all the words with an odd number of letter L, with Bm. Let us notice the digraph
Dm is in fact the bipartite graph (Pm,Bm) which comes as a result of m being an odd
number and out of the definition of E(Dm).

Lemma 1. Pm and Bm are sets of the same cardinality, to be more precise

| Pm |=| Bm |=
(1−
√

2)m +(1+
√

2)m

2
.

Proof. We begin by defining a mapping ϕ : Pm→Bm between these two sets in the follow-
ing way. At first, each vertex p∈ Pm is being associated with the element ϕ(p)∈Bm which
as a cyclic word is obtained from the word p substituting each appearance of L with R and
reverse, each appearance of R with L. Since m is an odd number, the number of letters R in
the word p is consequently odd, thus the number of letters L in the word q is odd. Clearly,
this particular mapping is therefore well defined. Additionally, for each element b ∈ Bm
there is a uniquely determined element from Pm which maps into it by the same principal
- substituting each letter L with R and conversely, so the mapping ϕ is a bijection.

With the aim of determining the exact cardinality of the set V (Dm) let ln be defined
as the number of all the (non-cyclic) words of length n over the alphabet {L,M,R} such
that all of its maximal subwords which consist solely of consecutive Ms are of even length.
Having analised all the potential candidates for the choice of the letter corresponding to
vertex v( j)

1 what we obtain is the following recurrence formula: ln = 2ln−1 + ln−2, with the

initial conditions l1 = 2, l2 = 5 (l0
def
= 1) alongside with |Pm∪Bm |= 2lm−1+2lm−2. Solving

the above recurrence equation for ln in the standard fashion we have that | Pm ∪Bm |=
(1−
√

2)m +(1+
√

2)m, which implies the very statement of the lemma. 2

Let P ∗m, B∗m and Em be subsets of V (Dm) which consist of the words without the letter
L, words with exactly one letter L and those words which do not contain the letter R at all,
respectively. Evidently, P ∗m ⊆ Pm i B∗m ⊆ Bm. Note that if the cyclic word p≡ p1 p2 . . . pm
over the alphabet {L,R,M} belongs to one of these sets V (Dm), Pm, Bm, P ∗m, B∗m or Em,

then the word σ(p)
def≡ pm pm−1 . . . p2 p1 (obtained under reversal) belongs to the very same

set, as well as the word ρk(p)
def≡ pk pk+1 . . . pm p1 . . . pk−1 for an arbitrary k (1 ≤ k ≤ m)

(this is a consequence of the cylinder’s symmetry with respect to the plane which contains
the cylinder’s axe and of its rotational symmetry). We say that the words σ(p) and ρk(p)
(1 ≤ k ≤ m) are of the same type as p. Representatives of any possible type of states for
m = 3 (of some cycle C( j)

3 ) are shown in Figure 3, whereas the same for m = 5 (and cycle

C( j)
5 ) are depicted in Figure 4 and Figure 5). Additionally, note that in case there exists an

edge in the digraph Dm which points from v to some vertex w, than there exists an edge
pointing from vertex ρk(v) to vertex ρk(w) (1 ≤ k ≤ m), but also an edge pointing from
vertex σ(v) to vertex σ(w).

Lemma 2. The number of different types of words belonging to the set Pm is equal to the
number of different types of words from the set Bm.

Proof. Let us form a bijection between these two sets in the following manner. With
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each of the representatives p ∈ Pm from the class of words that are of the same type we
associate a representative of the class of words ϕ(p) ∈ Bm (substituting each letter L with
R and conversely, each letter R with L). It follows trivially that the mapping defined as
such is a bijection from the facts that the mapping ϕ : Pm→ Bm is a bijection and that the
words of the same type are being mapped into adequate words of the same type. 2

Let us denote with f p(k) the number of all the walks of length k (k ≥ 0) in the
digraph Dm which begin at vertex p (p ∈V (Dm)) and end at a vertex from the set Em.

It is then fairly simple to prove the following two lemmas:

Lemma 3. Each of the perfect matchings of the graph Gm,2n (n ≥ 1), corresponds to a
unique walk of length 2n− 1 in the digraph Dm which begins at a vertex from the set P ∗m
and ends at a vertex from the set Em, whilst the j-th vertex (1 ≤ j ≤ 2n) in that walk
represents the state of the j-th cycle C( j)

m from the observed perfect matching, and vice
versa. Each walk of length 2n−1 in the digraph Dm which starts at a vertex from the set
P ∗m yet ends at a vertex from the set Em defines a unique perfect matching of the graph
Gm,2n whose each cycle C( j)

m (1≤ j ≤ 2n) is in the state corresponding to the j-th vertex in
that walk.

Lemma 4. Each near-perfect matching of the graph Gm,2n+1 (n ≥ 0) with a vacancy on
the cycle C(1)

m of this graph corresponds to a unique walk of length 2n in the digraph Dm
which begins at a vertex from the set B∗m and ends at a vertex from the set Em, whilst the
j-th vertex (1 ≤ j ≤ 2n+1) in that walk represents the state of the j-th cycle C( j)

m for the
given near-perfect matching, and vice versa. Each walk of length 2n in the digraph Dm
which starts at a vertex from the set B∗m and ends at a vertex from the set Em defines a
unique near-perfect matching of the graph Gm,2n+1 with a vacancy on the cycle C(1)

m whose
state of the cycle C( j)

m for each j, where 1≤ j≤ n, is exactly the word corresponding to the
j-th vertex of that walk.

Forming the above mentioned bijections we have that

(2) K̂P
m(n) = Km(2n) = ∑

p∈P ∗m
f p(2n−1) (n≥ 1)

(3) K̂B
m(n) = K̂(1)

m (2n+1) =
1
m ∑

b∈B∗m

f b(2n) (n≥ 0)

Note that f b(0) = 0 for b ∈ B∗m\Em, whereas f b(0) = 1 for b ∈ B∗m∩Em, and that | B∗m∩
Em |= m and K̂B

m(0) = K̂(1)
m (1) = 1.

Definition 2. Two cyclic words p ≡ p1 p2 . . . pm and q ≡ q1q2 . . .qm over the alphabet
{L,R,M} are called equivalent iff there exists a word q∗ of the same type as q in which all
the letters R (in case there are any at all) appear on exactly the same positions as in the
word p
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For example, vertices b(1) ≡ LMMMM i b(5) ≡ LMMLL are two vertices of the di-
graph Dm of a different type, in which the letter R does not appear. Consequently, these
two words are equivalent. Vertices p(5)≡ LMMRL, p(7)≡ LMMLR, p(8)≡ LLLLR i p(1)≡
MMRMM are also equivalent as e.g. the words ρ4(p(5)) ≡ RLLMM, σ(p(7)) ≡ RLMML,
ρ5(p(8)) ≡ RLLLL and ρ3(p(1)) ≡ RMMMM are all the words in which the unique R ap-
pears in the initial position. Additionally, when observing the vertices b(3) ≡ LRMMR and
ρ4(b(7)) ≡ LRLLR we come to notice that the letters R appear in the second and the fifth
position, thus proving the vertices b(3) i b(7) to be equivalent. Note that all the vertices of
the same type are also mutually equivalent.

Lemma 5. In case the vertices v and w of the digraph Dm are equivalent, then f v(k) =
f w(k), for all k ≥ 0.

Proof. Let us consider, at first, the case of different vertices of the same type. Let w =
ρr(v), for some integer r (2 ≤ r ≤ m). Every walk v0 ≡ v,v1,v2, . . . ,vk of length k in the
digraph Dm which starts with v and ends at a vertex from the set Em (vk ∈Em) corresponds
to a unique walk ρr(v0) ≡ ρr(v) ≡ w,ρr(v1),ρr(v2), . . . ,ρr(vk) of length k in the digraph
Dm which begins at w and ends at a vertex from the set Em (ρr(vk) ∈ Em), and vice versa.
Every walk w0 ≡ w,w1,w2, . . . ,wk of length k in the digraph Dm which begins with w
and ends at a vertex belonging to the set Em (wk ∈ Em) corresponds to a unique walk
ρm−r(w0)≡ ρm−r(w)≡ v,ρm−r(w1),ρm−r(w2), . . . ,ρm−r(wk) of length k in the digraph Dm
which begins at v and ends at a vertex from the set Em (ρm−r(wk) ∈Em). Consequently we
have f v(k) = f w(k). The case of w = σ(v) is pretty similar.

If the vertices v and w are not of the same type, yet equivalent, then there exists the
vertex w∗ of the same type as w in which the letter R appears on the exact same positions
as in v. Then each successor of vertex v is additionally the successor of vertex w∗ in the
digraph Dm and the other way around (having letters L in exactly those positions where Rs
are in v or w∗). This implies a possibility of forming a bijection between the set of all the
walks of length k which begin at v and end at a vertex from the set Em with the set of all
such walks which instead of beginning at vertex v start at vertex w∗ simply by substituting
the initial vertex v with w∗ in each of those walks. This is why f v(k) = f w∗(k) = f w(k). 2

Let Mm be the adjacency matrix of the digraph Dm. Based on the Cayley-Hamilton
theorem, all the sequences f v(k),k ≥ 0,v ∈ V (Dm) fulfill the same recurrence relation
which is determined by the characteristic equation of the matrix Mm. Since all of these
sequences are the same for all the equivalent vertices, then contracting all of such into one
single vertex, with edges being multiplied in case one of the vertices had more different
successors which are mutually equivalent, we obtain a multidigraph Dm with the adjacency
matrix Mm whose characteristic equation also determines the recurrence formulae of the
observed sequences. Sets of vertices Pm, P ∗m, Bm and B∗m are in this way being reduced to
the setsP m, P ∗m, Bm andB∗m, respectively. Clearly, P ∗m ⊆ P m and B∗m ⊆ Bm.
Multidigraph D3 is shown in Figure 6 whereas D5 is in Figure 7. For instance, from
the vertex which came into existence by the subtraction of vertex b(1) = LMMMM and
the vertices which were equivalent to it five edges point into the vertex obtained by the
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subtraction of vertex p(2) = MMRRR and the vertices equivalent to it as amongst them
there exist five vertices in total (MMRRR,RMMRR,RRMMR,RRRMM and MRRRM) that
are all of the same type as p(2) (including this vertex itself) all of which are successors of
b(1) in the digraph Dm. From the vertex which was created by the contraction of vertex
p(1) = MMRMM the vertices equivalent to it point two edges into the vertex obtained by
the contraction of b(2) = LMMRR and the vertices equivalent to it, for there exist exactly
two vertices of the digraph D5 from the ten vertices that are of the same type as vertex b(2)

which are the successors of vertex p(1). Those are ρ4(b(2))≡ RRLMM and ρ4(σ(b(2)))≡
MMLRR (with the letter L on the third position).

Note that all the vertices from the set Em are being contracted into one single vertex
e∈Bm. In case m= 5, vertex e has been obtained by contracting the following few vertices
b(1), b(5), b(8) and the vertices of the same type as theirs (Figure 7). However, this is not
the case for the set P ∗m. Namely, already for the case of m = 3 we have that | P ∗m |> 1.

p 1

p 2

1
p

3

b
2

3

(  )

(  )
b

b
(  )

(  )

(  )

(  )

Figure 6: Multidigraph D3.

Lemma 6. The sets P m and Bm are of the same cardinality.

Proof. Note that the number of all the elements of the set P m (considered as words) in
which the letter R appears k times (k is odd) is equal to the number of all the elements
from the set Bm in which the letter R appears m− k (m− k is even) times. In other words,
the number of different (binary) bracelets with k red beads and m− k green beads is equal
to the number of different bracelets with m− k red beads and k green beads. (What we
consider under the term of bracelet is a circle of m colored beads with up to two different
colors that can be turned over.) Therefore, | P m |=| Bm |= |V (Dm) | /2. 2

To illustrate this, for instance, the number of vertices in D5 with exactly two Rs
(b(2) and b(4)) is equal to the number of vertices with exactly 3 Rs (p(2) and p(4)). Ad-
ditionally, the number of vertices in D7 containing 0,2,4 and 6 letters R is 1,3,4 and 1,
respectively, which is exactly the number of vertices we have for D7 with 7,5,3 and 1
letter R, respectively. The exact number of the bracelets with m beads is

|V (Dm) |=
1
2

(
1
m ∑

d|m
φ(d)2m/d +2(m+1)/2

)
with φ(d) the Euler’s totient function [2]. For an efficient way to generate them see [7].
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8
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p

p

p 4

(  )

(  )
b

b
(  )

(  )

(  )

(  )

(  )

(  )

(  )

(  )

(  )
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(  )

(  )
(  )
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Figure 7: Multidigraph D5.

Lemma 7. All the sequences gb(n) def
= f b(2n) (n≥ 0), for an arbitrary b ∈ Bm, as well as

the sequences gp(n) def
= f p(2n+ 1) (n ≥ 0), for an arbitrary p ∈ Pm obey the very same

difference equation of order |V (Dm) | /2.

Proof. Owing to the fact that the multidigraph Dm = (P m,Bm) is bipartite (as well as the
digraph Dm = (Pm,Bm) itself), his adjacency matrix may be represented as a block matrix[

0 Am
Bm 0

]
, where the matrices Am and Bm are square matrices of the same order

| P m |=| Bm |=|V (Dm) | /2.
Let P m = {p1, p2, . . . , ps} and Bm = {b1,b2, . . . ,bs}, where s =| V (Dm) | /2. For

the sequences f v(k),k ≥ 0,v ∈V (Dm) the following holds:

(4)



f p1(k)
f p2(k)

...
f ps(k)
f b1(k)
f b2(k)

...
f bs(k)


=

[
0 Am

Bm 0

]k



f p1(0)
f p2(0)

...
f ps(0)
f b1(0)
f b2(0)

...
f bs(0)


and f x(0) =

{
0, for x 6= e
1, for x = e.



A Conjecture Concerning Near-Perfect Matchings on Cylinders Cm×Pn of Odd Order 13

From here we reach a conclusion that the sequence gb(n) def
= f b(2n), for each b∈Bm obeys

the difference equation which is determined by a characteristic equation of the matrix
BmAm, whereas the sequence gp(n) def

= f p(2n+1), for each p ∈ Pm satisfies the recurrence
formula which is determined by the characteristic equation of the matrix AmBm. Now,
since for any two arbitrary square matrices A and B the matrices AB and BA have the same
characteristic polynomial (Theorem 1.3.22 in [3]), the statement of the lemma follows. 2

Note that K̂B
m(n)

def
= K̂(1)

m (2n+1) =
1
m ∑

b∈B∗m

f b(2n) =
1
m ∑

b∈B∗m

gb(n) (n≥ 0), whereas

the sequence K̂P
m(n)

def
= Km(2n) = ∑

p∈P ∗m
f p(2n− 1) = ∑

p∈P ∗m
gp(n− 1) (n ≥ 1). If two se-

quences satisfy the same linear, homogeneous difference equation with constant coeffi-
cients, then their linear combination also satisfies the very same recurrence formula. Thus
it holds that:

Corollary 1. The sequences K̂B
m(n) (n≥ 0) and K̂P

m(n) (n≥ 1), satisfy the same difference
equation of order at most |V (Dm) | /2.

In case of m = 3 we have A3 =

[
1 1
1 0

]
and B3 =

[
3 1
1 0

]
, whereas in case of

m = 5 we have A5 =


1 2 1 1
1 1 0 0
1 0 0 0
0 0 1 0

 and B5 =


5 5 1 0
2 1 0 0
1 0 0 1
1 0 0 0

 .
Characteristic polynomial both for matrix A3B3 and for matrix B3A3 is 1−5z+ z2 whereas
for matrices A5B5 and B5A5 that polynomial is in fact 1− 19z+ 41z2− 19z3 + z4. Now

applying the standard approach we obtain GB
3 (z) =

1
1−5z+ z2 and GP

3 (z) =
1− z

1−5z+ z2 ,

whereas in case of m = 5 we have GB
5 (z) =

1− z2

1−19z+41z2−19z3 + z4 and

GP
5 (z) =

(1− z)(1−7z+ z2)

1−19z+41z2−19z3 + z4 , which is in agreement with the results obtained in

[6].
Let us now turn our attention to the case in which the vacancy v of some near-perfect

matching of the graph Gm,2n+1 appears on the cycle C( j)
m where 2≤ j ≤ 2n.

The Proof of Theorem 1
Without loss of generality, we shall assume that v≡ v( j)

1 is a vacancy.
I case: j is an even integer

Let j = 2k for some k (1≤ k≤ n). The existence of a near-perfect matching implies that the
state of the vertices belonging to the cycle C( j)

m , denoted by p, contains an even number of
letters L and an odd number of letters R, i.e. p∈Pm. The number od near-perfect matchings
in the graph Gm,2n+1 with vacancy v≡ v( j)

1 which generate the state p on the j-th cycle is,
according to the multiplication law, equal to the number f p(2(n−k)+1) f p̂(2k−1), where
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p̂ denotes the state obtained from p when all the letters L, with the exception of the first
appearance, have been replaced with R and all letters R with L. Note that p̂ ∈ Pm, too. The
total number of near-perfect matchings in the graph Gm,2n+1 with vacancy v≡ v( j)

1 is equal
to

(5) K̂(2k)
m (2n+1) = ∑

p∈P 1
m

f p(2(n− k)+1) f p̂(2k−1),

whereP 1
m denotes the set of all the words from Pm which start with the letter L.

II case: j is an odd integer
If j = 2k+1 for some k (1 ≤ k ≤ n−1), then the state of vertices belonging to the cycle
C( j)

m , denoted by b, belongs to the set Bm because it contains an odd number od letters
L and an even number of letters R. The number of near-perfect matchings of the graph
Gm,2n+1 with vacancy v≡ v( j)

1 which generate the state b on the j-th cycle is equal to
f b(2(n− k)) f b̂(2k), where b̂ represents the state obtained from b when all the letters L,
except for its first occurrence, have been replaced with R and by the substitution of all the
letters R with L. The total number of near-perfect matchings in the graph Gm,2n+1 with
vacancy v≡ v( j)

1 is now equal to

(6) K̂(2k+1)
m (2n+1) = ∑

b∈B1
m

f b(2(n− k)) f b̂(2k),

where B1
m denotes the set of all the words from Bm which begin with the letter L.

Now, utilizing (5), (6), (1) and (4) we have

K̂N
m (n)

def
= m ·

2n+1

∑
j=1

K̂( j)
m (2n+1) = m ·

 ∑
p∈P 1

m

(
n

∑
k=1

f p(2(n− k)+1) f p̂(2k−1)

)
+

∑
b∈B1

m

(
2 f b(2n) f b̂(0)+

n−1

∑
k=1

f b(2(n− k)) f b̂(2k)

) , i.e.

(7) K̂N
m (n) = m ·

 ∑
p∈P 1

m

(
n−1

∑
k=0

gp((n−1)− k)gp̂(k)

)
+ ∑

b∈B1
m

(
n

∑
k=0

gb(n− k)gb̂(k)

) .
Let αp(n) be the sequence α

p(n) def
=

n

∑
k=0

gp(n− k)gp̂(k), where p ∈ Pm∪Bm i n≥ 0.

From (7) we have

(8) K̂N
m (n) = m ·

 ∑
p∈P 1

m

α
p(n−1)+ ∑

b∈B1
m

α
b(n)

 .
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Since the generating function of sequence αp(n) is equal to the product of generating
functions of the sequences gp(n) and gp̂(n), thus based upon Lemma 7 the statement of
Theorem 1 follows, which was our goal. 2

Let us now derive the formula for K̂N
5 (n).

The set B1
5 comprises five vertices (LMMMM, LMMLL, LLMML, LLLMM and

LLLLL) equivalent to b(1) (whereas the vertices corresponding to them are LMMMM,
LMMRR, LRMMR, LRRMM i LRRRR, respectively, which are equivalent to b(1), b(2),
b(3), b(2) and b(4)), five vertices (LMMRR, LRRMM, LRRLL, LLRRL i LLLRR) equivalent
to b(2) (for two of them the corresponding vertices (the ones “with a hat”) are equivalent
to b(1), two to b(2) and one to b(3)), four vertices (LRMMR, LLRLR, LRLLR i LRLRL)
equivalent to b(3) (for two of them the corresponding vertices are equivalent to b(3), one to
b(1) and one to b(2)) and vertex b(4) (LRRRR) (whose corresponding vertex b̂(4) = b(8) is
equivalent to b(1)).

The set P 1
5 contains four vertices of the same type as p(5) and two vertices of the

same type as p(7) (all of which are equivalent to p(1) and for each such vertex p, the vertex
corresponding to it p̂ is equivalent to p(1)), four vertices of the same type as p(8) (all
equivalent to p(1), for two of which the corresponding vertices are equivalent to p(2) and
for the other two to p(4)), two vertices of the same type as p(4) (the vertices corresponding
to them are equivalent to p(1)) and two vertices of the same type as p(6) (equivalent to p(2)

and the vertices corresponding to them are equivalent to p(1)).
From the initial conditions for sequences gp, where p ∈ P 5 ∪B5, obtained by the

exponentiation of matrix M5, we derive their generating functions:

gp1(z) =
1− z2

Q(z)
, gp2(z) =

1−5z+3z2

Q(z)
, gp3(z) = gb1(z) =

1−8z+8z2− z3

Q(z)
,

gp4(z) = gb3(z) =
z+ z2

Q(z)
, gb2(z) =

3z−5z2 + z3

Q(z)
, gb4(z) =

z− z3

Q(z)
,

where Q(z) def
= 1−19z+41z2−19z3 + z4.

Applying the formula (8) we get

GN
5 (z) = 5z [6gp1(z)gp1(z)+4gp1(z)gp2(z)+4gp1(z)gp4(z)]+5

[
gb1(z)gb1(z)+

4gb1(z)gb2(z)+2gb1(z)gb3(z)+2gb1(z)gb4(z)+2gb2(z)gb2(z)+2gb2(z)gb3(z)+

2gb3(z)gb3(z)
]
= 5

(1+10z−56z2 +84z3−24z4−10z5 + z6)

(1−19z+41z2−19z3 + z4)2 , which has been obtained

in [6].

The derivation of the formula GN
3 (z) = 3

(1+2z− z2)

(1−5z+ z2)2 is fairly analogous and is

hence left as an exercise for the readers.
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