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The statistical description of the process of direct nucleon ejection is the subject of this paper.
This description is based on the generalized Fokker-Planck-Kolmogorov equation. The basic
proposal is this: deterministic equations and their solutions have the mean values of the sto-
chastic model of the ablation problem. The problem of deformation of the phase transition
front is considered. The study is carried out by using the introduced stability position for the
dispersion of solutions for mean values. The result of the study is the conclusion that the in-
fluence of the Markov diffusion coefficient leads to distortion of the original shape of the
boundary phase transition front. The effect of the initial aspiration to resist changing the
shape of the phase transition front was found.
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INTRODUCTION

The problem of ablation has many practical im-
plementations [1, 2]. One of them is the application to
the direct ejection process, based on the interaction of
high energy particles whose associated wavelengths
are smaller than the nucleus so they interrelate directly
with the nucleons. Besides nuclear physics, there are
also applications in other areas. Firstly, it is the process
of transferring the substance from the surface of a solid
body under the action of radiation and the hot gas flow.
Secondly, it is the reduction of the glacial mass or
snow cover as a result of melting and evaporation, de-
pending largely on climatic factors. Thirdly, it is the re-
moval (evaporation) of a substance from the surface
under the action of laser radiation. The description of
the ablation has the type of Stefan problem of thermal
conductivity during phase transformations [3].

It is proposed here to consider such a problem in
a stochastic view. In this direction, the first results are
presented in publications [4-7]. The basic proposition
is the following: deterministic equations and their so-
lutions are the mean values of a stochastic model. The
main attention, which was dedicated to Stefan prob-
lem [8], was made to explain the mechanisms of the
appearance of instability of the shape of change of the
phase transition front.
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Based on the generalized equation of
Fokker-Planck-Kolmogorov (FPK) for the probability
density (PD) [9], the equation for temperature disper-
sion was derived and conditions of stability by disper-
sion were introduced. Let us start by specifying the
definitions of stability in the stochastic sense by dis-
persion of the solution of the problem for the mean
value [9].

Definition 1. We call the solution of a me-
dium-value problem stable in the stochastic sense by
dispersion, if for any £ > 0 is possible to choose such
o0(e) > 0 that for the initial value of the dispersion
Dy, <6(g)dispersion Dy (¢) for all 7> ¢ satisfied in-
equalities Dy (7) <e.

Definition 2. We call the solution of the problem
for the mean value asymptotically stable in the sto-
chastic sense by dispersion, if for the initial value of
the dispersion Dy, <& (¢), where the dispersion D(7)
satisfies the condition hm 1 D(t) =G =const <+e.

ForD; =0and G= =0, the solution will be called
absolutely stable in the stochastic sense by dispersion.
Note that for Markov zero diffusion coefficient, stabil-
ity conditions in the stochastic sense turn to the classi-
cal Lyapunov stability conditions [10].

As aresult of the research of the classical Stefan
problem [8], strange dispersion behavior was identi-
fied at the initial moment. The essence of the effect is
the following: the regular component of the dispersion
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from its initial value decreases its initial value to some
moment of time 7,;, and reaches a minimum. This
means that at this time interval there is a resistance to
the change of shape of the phase transition front. After
a certain moment 7, this resistance weakens, the dis-
persion starts to grow and the phase of active deforma-
tion of the shape of the phase transition front begins.
This seemingly small effect, due to the lowness of the
coefficient of Markov's diffusion and time, can be im-
portant for fine technological processes, when during
the process it is required to preserve longer the original
flat form, or raised crystal, or a flat shape of a solid
body, with other thermal action, which does not have
to possess the character of phase transformations, for
example, when nano coatings are applied.

Knowing the dispersion change in time, it is nec-
essary to run the technological process gradually start-
ing from ¢ = 0 to ¢,,;,, then it is necessary to stop, and
start again and periodically repeat this procedure
many times. This will level out unnecessary random
effects that contribute to the deformation of a flat
shape of a solid body subject, to external and internal
accidental influences.

THE DERIVATION OF THE GENERALIZED
FOKKER-PLANCK-KOLMOGOROV
EQUATION

Why did we have to derive the equation for the
probability density, which we called a generalized? The
fact is that the classical equation includes only a time
coordinate and there are no spatial co-ordinates. If the
classical equation allows one to obtain only the Cauchy
problem for an ordinary differential equation with re-
spect to the mean values proposed in [5], a generaliza-
tion makes it possible to construct an initial-boundary
value problem that corresponds to partial differential
equations. To clarify further arguments, we reproduce
the derivation of the generalized FPK.

The basis for obtaining stochastic analogues of
problems corresponding to deterministic problems is
the representation we proposed in [8] that the solution
of the deterministic problem completely coincides
with the solution of the problem for mean values. Let
us mark the probability density function (hereinafter
PD) with P (¢, x,£2) . The classical FPK equation, writ-
ten without the term responsible for the discontinuity,
has the following form

OP(t,x,02) __O[A(t,x,)P(t,x, )]
ot 00

2
+0sp, & P1x2)
Qz

)

Here, A(t, x, Q2) is the drift coefficient, B, — the
Markov diffusion coefficient of a random phenome-

non, ¢ — the time, x — a space co-ordinate, and 2 — the
characteristic of the random field.

We modify eq. (1) to describe the random ther-
mal fields. The mean value of the temperature and the
second moment will be denoted by

oo
MY (t,x)= [ QP(t,x,Q2)Q

—o0

+o0
M@ (t,x)= [ Q7P(t,x,Q)Q

—o0

Mark the dispersion with
DI (1,)=MP (t,x)-[M P (1,0)1,

the question arises as to how to set the drift coefficient,
so that from the equation for PD one would obtain an
equation for mean values that would coincide with the
classical heat equation for deterministic temperature?
The answer to this question can be obtained by an ana-
lytical solution of the following inverse problem. We
represent the expansion of the drift coefficient in the
Maclaurin series in order of (2

A(t,x, Q)= Y ay (1,x)0Q"
k=1

It is no coincidence that the series starts with the
member a, (¢, x)¢2, since using a coefficient @, (¢, x),
which does not depend on (2 would lead to a determin-
istic Liouville phenomenon with zero dispersion.

The equation for the mean values of the form

oMY (t,x) _aaz MY (t,x) o
ot ox?
could be obtained from eq. (1), where a is the tempera-
ture conduction coefficient, if the necessary and suffi-
cient conditions are satisfied

82

a5 MP (1.2)

O o (1X) =0k =23,
M (1,x)

Indeed, by introducing A(z, x, £2) in eq. (1)

a,(t,x)=

2
aa—zMg) (t,x)
aP(t,x,2) 0 ax

O 0P(,x0) |+
o a2 MY (,x)
2
1058, L LX) P(t’f’“o) 3)
a0

multiplying both sides of eq. (3) by €2 and integrating
over this variable in infinite boundaries, we obtain the
following equation
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J- 0 OP(t,x .Q) natural and technological influences, is explained by
ot the random character of all these phenomena. It has
70:3 " been shown that the special role in description of these
- 2 Mg phenomena is given by the diffusion coefficient of
0 % QP(t,x,8) Markov field, which primarily determines the distor-
- Mg tion of the front.
- _J‘ do+ It was established that the size of the deformation
e 0Q zone of the phase transition front, during the ablation, in-
e 0%P(t,x,Q) ) creases proportionally with Vi [1,2]. Ifthe speed of the
#0358, J Q GT de2 front movements is less than, or equal to the growth rate

We rearrange the operations of integration and
differentiation on the left-hand side of the eq. (4), and
on the right-hand side we integrate by parts. Then, tak-
ing into account the equality of the PD and its deriva-
tives at infinity, we obtain an equation for the mean
values, which coincide with the classical heateq. (2).

If initial and boundary conditions of the form

P(0,x,Q2)=P,; (x,02),x €[0,1],P(2,0,2)=P,(¢,£2)
P(t,1,Q)=P, (t,02),t €[0,4%),2 € (—,+x)
are added to eq. (3), then we get the formulation of the
problem for the mean values of the form eq. (2).

The problem for dispersion at the boundary of
the phase transition has the following form

bty 1
dt LoM Y (1)

A oMV (t,x)

2 2 (D)
1 0" M’ (t,x)

0x x=M" () ox* =M (1)
)
Dy (t)+Bg,t>0
Dy (0)=Dg =57 (M) (6)

where p is the density and L — the heat of phase transi-
tion.
Equation (5) can be expressed as

d
= M0 (1)
dDy (1) gy
i@ Mg)(t) Dy (t)+Bg (7

and solution of problem (6)-(7) has a form

te [0,+°°) (8)
INVESTIGATION OF THE DEFORMATION
OF THE PHASE TRANSITION FRONT

The fact that different origin front shape defor-
mation is often observed, caused by anthropogenic,

of the deformation zone, then it is necessary to speak of
the instability of this front. It means the front itself does
not exist. A similar presentation is determined by statisti-
cal distribution and development during the time of cen-
ters of the new phase formation, which also determine
the size of Markov diffusion coefficient.

There are different approaches to explaining the
occurrence and mechanisms of instability of the form
of the transition phase front. In most cases the descrip-
tion of instability is based on the study of the determin-
istic causes of the deformation of the phase transition
boundary. In fact, considering that there is a positive
gradient in some part of this boundary, a small forward
displacement of a certain part can lead to an increase in
the heat flux and the speed of occurrence of a new
phase, therefore, so that a protrusion of the front takes
place on this section. In this part there is a convexity of
the front. The curvature of the surface of the phase
transition is of great importance: the convex sections
grow faster than the concave ones.

However, this deterministic explanation does
not take into account the reasons for the random distri-
bution of the centers of a new phase formation, which
can be described only within a stochastic model. The
integration of stochastic concepts of the phase forma-
tion kinetics, in combination with the models pro-
posed here, allows one to estimate, on one hand, the
diffusion coefficient of the Markov random field, and,
on the other hand, its connection with the stability con-
ditions of the phase transition front. From the solution
(8), according to the law of motion of the front in the
form of M (Tl) (t)= ant, it follows that the dispersion
for 55 =0,7 €[0,+«)has a form

Dy(1)= [j (2+50](af) =B,tlnt

We denote by Reg D (t) the value of the product
of the improper integral by the mean value of the law
of motion of the front

RegD(t)= atj
0 Ol

BodS

2:BQtlnt

where Reg D(f) is regular dependence dispersion of
time.
The minimum Reg D(f) is attained at ¢,;, = 1/e
and has a value
B
‘R%D(tmm j S —

e

_Bo

e
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Figure 1. Dispersion dependence on time, which illus-
trates the effect of resistance to change of the phase tran-
sition front at the initial moments of time

The dependency graph Reg D is shownin fig. 1.

It turns out that at the initial moments of time the
dispersion decreases and the initial configuration of
the front resists its original state.

From this conclusion, it follows that it is neces-
sary to build a controlled process of motion by the
front so as to stop at the moment of minimal disper-
sion, then the original front surface will be close to the
original one. If this is not taken into account, then a
strong distortion will result, such as, for example, as
we observe with icicles on roofs of buildings.

CONCLUSIONS

The obtained result is important and applicable to
the processes of direct ejection in high energy physics.
In cases where the process of movement of the front is
impossible to manage, when the phenomenon has a nat-
ural character that is still beyond the power of man, for
example, weather determines the growth of icebergs or
evaporation from a large surface, or the meteorite burn-
ing in the atmosphere (by the way, all these are Stefan's
problems). But, on the other hand, there are many phe-
nomena, over which a person has power and the re-
searcher can control these phenomena.

If you manage an object so as to influence impul-
sively, for example, the dynamics of entering satellites
into dense layers of the atmosphere, it is possible to
prepare a low impact to the surface of the satellite
when it lands. The landing of a controlled space object
in accordance with the desire to preserve the shape of
the phase transition front must be carried out by gradu-
ally slowing or gradually changing the path of the
body movement. But these are the problems of the
constructors. Here we can only offer to pay attention to
our proposals.
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Hrop A. COJIOBJEB, [Inana 'h. 10JIMhAHUH-BEKWh

INPUMEHA JEJHAYNHE ®OKEP-INIAHK-KOJIMOI'OPOBA 3A
OIPEGLUBAIBE CPEJIBLE BPEJHOCTU HYK/IEOHA HACTAJ/IUX
MNPOUECOM NTUPEKTHOI UBBUJAIBA

Tema oBor pajia je cTaTUCTUYKY OIHKC ITPOlieca AUPEKTHOT N30Hjara HyKJIeOHa KOjH je 3aCHOBaH
Ha reHepanu3oBanoj Poxep-Ilnank-Konmoroposoj jegnaunan. J[leTepMUHUCTHUKA jefHAUMHA U HEHA
pelIemka MpefIcTaBibajy CPeAhY BPEIHOCT CTOXaCTHIKOT MOofiesia mpobiema abnanuje. PaamoTpen je mpo6-
neM aedopmanyje asHor npenasa. VcrpaxkupBamwe je CpoOBEeHO KOpHUIThemeM YBEEHOT MOJoXkKaja
CTaOMITHOCTH 3a JWCIEp3Wjy Cpele BPEfHOCTH pellekha M 3aK/bydak je jAa yTuiaj Mapkosor
koeduijenTa Audysuje ToBOAN A0 AedopMalnyje MOYETHOT OOJIHMKAa Ha TpaHMIM (pa3HOT mperasa.
ITponaben je edekat KojuM ce cripedaBa Memame 00auKa ppoHTa a3HOT mpesasa.

Kmwyune peuu: Citiecparnos tipobaem, Oupekitino usbujarse, jeOnavuna @okep-Ilaanx-Koamozopoasa,
ougpeperyujasra jeOHawuna, pporit pasHoz iipeaasa




