• Српски
    • Српски (Serbia)
    • English
  • English 
    • Serbian (Cyrilic)
    • Serbian (Latin)
    • English
  • Login
View Item 
  •   PLATON
  • Природно-математички факултет
  • Главна колекција / Main Collection
  • View Item
  •   PLATON
  • Природно-математички факултет
  • Главна колекција / Main Collection
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Binary Quantization Analysis of Neural Networks Weights on MNIST Dataset

Thumbnail
View/Open
28881-Article Text-101359-1-10-20210823 (1).pdf (778.7Kb)
Date
2021-08-23
Authors
Perić, Zoran
Denić, Bojan
Savić, Milan
Vučić, Nikola
Simić, Nikola
Metadata
Show full item record
Abstract
This paper considers the design of a binary scalar quantizer of Laplacian source and its application in compressed neural networks. The quantizer performance is investigated in a wide dynamic range of data variances, and for that purpose, we derive novel closed-form expressions. Moreover, we propose two selection criteria for the variance range of interest. Binary quantizers are further implemented for compressing neural network weights and its performance is analysed for a simple classification task. Good matching between theory and experiment is observed and a great possibility for implementation is indicated.
URI
https://platon.pr.ac.rs/handle/123456789/1189
DOI
https://doi.org/10.5755/j02.eie.28881
M category
M23
openAccess
M23
openAccess
Collections
  • Главна колекција / Main Collection

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 

All of DSpaceInstitutionsBy Issue DateAuthorsTitlesSubjectsThis institutionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV