• Српски
    • Српски (Serbia)
    • English
  • Srpski (latinica) 
    • Srpski (ćirilica)
    • Srpski (latinica)
    • Engleski
  • Prijava
Pregled rada 
  •   PLATON
  • Природно-математички факултет
  • Главна колекција / Main Collection
  • Pregled rada
  •   PLATON
  • Природно-математички факултет
  • Главна колекција / Main Collection
  • Pregled rada
JavaScript is disabled for your browser. Some features of this site may not work without it.

Binary Quantization Analysis of Neural Networks Weights on MNIST Dataset

Thumbnail
Otvaranje
28881-Article Text-101359-1-10-20210823 (1).pdf (778.7Kb)
Datum postavljanja dokumenta
2021-08-23
Autori
Perić, Zoran
Denić, Bojan
Savić, Milan
Vučić, Nikola
Simić, Nikola
Metapodaci
Prikaz svih podataka o dokumentu
Apstrakt
This paper considers the design of a binary scalar quantizer of Laplacian source and its application in compressed neural networks. The quantizer performance is investigated in a wide dynamic range of data variances, and for that purpose, we derive novel closed-form expressions. Moreover, we propose two selection criteria for the variance range of interest. Binary quantizers are further implemented for compressing neural network weights and its performance is analysed for a simple classification task. Good matching between theory and experiment is observed and a great possibility for implementation is indicated.
URI
https://platon.pr.ac.rs/handle/123456789/1189
DOI
https://doi.org/10.5755/j02.eie.28881
M kategorija
M23
openAccess
M23
openAccess
Kolekcije
  • Главна колекција / Main Collection

DSpace software copyright © 2002-2016  DuraSpace
O PLATON repozitorijumu | Pošaljite zapažanja
Theme by 
Atmire NV
 

 

Kompletan repozitorijumInstitucijePo datumu izdavanjaAutoriNasloviTemeOva institucijaPo datumu izdavanjaAutoriNasloviTeme

Moj nalog

PrijavaRegistracija

DSpace software copyright © 2002-2016  DuraSpace
O PLATON repozitorijumu | Pošaljite zapažanja
Theme by 
Atmire NV