Show simple item record

dc.contributor.authorPerić, Zoran
dc.contributor.authorDenić, Bojan
dc.contributor.authorSavić, Milan
dc.contributor.authorVučić, Nikola
dc.contributor.authorSimić, Nikola
dc.date.accessioned2023-04-11T10:21:08Z
dc.date.available2023-04-11T10:21:08Z
dc.date.issued2021-08-23
dc.identifier.citationIII44006en_US
dc.identifier.urihttps://platon.pr.ac.rs/handle/123456789/1189
dc.description.abstractThis paper considers the design of a binary scalar quantizer of Laplacian source and its application in compressed neural networks. The quantizer performance is investigated in a wide dynamic range of data variances, and for that purpose, we derive novel closed-form expressions. Moreover, we propose two selection criteria for the variance range of interest. Binary quantizers are further implemented for compressing neural network weights and its performance is analysed for a simple classification task. Good matching between theory and experiment is observed and a great possibility for implementation is indicated.en_US
dc.language.isoen_USen_US
dc.publisherKaunas University of Technologyen_US
dc.titleBinary Quantization Analysis of Neural Networks Weights on MNIST Dataseten_US
dc.title.alternativeElektronika ir Elektrotechnikaen_US
dc.typeclanak-u-casopisuen_US
dc.description.versionpublishedVersionen_US
dc.identifier.doihttps://doi.org/10.5755/j02.eie.28881
dc.citation.volume27
dc.citation.issue4
dc.subject.keywordsImage classificationen_US
dc.subject.keywordsMultilayer perceptronen_US
dc.subject.keywordsNeural networken_US
dc.subject.keywordsQuantizationen_US
dc.subject.keywordsSource codingen_US
dc.type.mCategoryM23en_US
dc.type.mCategoryopenAccessen_US
dc.type.mCategoryM23en_US
dc.type.mCategoryopenAccessen_US
dc.identifier.ISSN1392-1215


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record