Prikaz osnovnih podataka o dokumentu
Binary Quantization Analysis of Neural Networks Weights on MNIST Dataset
dc.contributor.author | Perić, Zoran | |
dc.contributor.author | Denić, Bojan | |
dc.contributor.author | Savić, Milan | |
dc.contributor.author | Vučić, Nikola | |
dc.contributor.author | Simić, Nikola | |
dc.date.accessioned | 2023-04-11T10:21:08Z | |
dc.date.available | 2023-04-11T10:21:08Z | |
dc.date.issued | 2021-08-23 | |
dc.identifier.citation | III44006 | en_US |
dc.identifier.uri | https://platon.pr.ac.rs/handle/123456789/1189 | |
dc.description.abstract | This paper considers the design of a binary scalar quantizer of Laplacian source and its application in compressed neural networks. The quantizer performance is investigated in a wide dynamic range of data variances, and for that purpose, we derive novel closed-form expressions. Moreover, we propose two selection criteria for the variance range of interest. Binary quantizers are further implemented for compressing neural network weights and its performance is analysed for a simple classification task. Good matching between theory and experiment is observed and a great possibility for implementation is indicated. | en_US |
dc.language.iso | en_US | en_US |
dc.publisher | Kaunas University of Technology | en_US |
dc.title | Binary Quantization Analysis of Neural Networks Weights on MNIST Dataset | en_US |
dc.title.alternative | Elektronika ir Elektrotechnika | en_US |
dc.type | clanak-u-casopisu | en_US |
dc.description.version | publishedVersion | en_US |
dc.identifier.doi | https://doi.org/10.5755/j02.eie.28881 | |
dc.citation.volume | 27 | |
dc.citation.issue | 4 | |
dc.subject.keywords | Image classification | en_US |
dc.subject.keywords | Multilayer perceptron | en_US |
dc.subject.keywords | Neural network | en_US |
dc.subject.keywords | Quantization | en_US |
dc.subject.keywords | Source coding | en_US |
dc.type.mCategory | M23 | en_US |
dc.type.mCategory | openAccess | en_US |
dc.type.mCategory | M23 | en_US |
dc.type.mCategory | openAccess | en_US |
dc.identifier.ISSN | 1392-1215 |